Pearson correlation coefficient
Pearson's correlation is a mathematical formula used to calculate correlation coefficients between two datasets. Most computer programs have a command to calculate this such as CORREL(dataset x: dataset y). You can calculate this by...
- Step 1: Find the mean of x, and the mean of y
- Step 2: Subtract the mean of x from every x value (call them "a"), and subtract the mean of y from every y value (call them "b")
- Step 3: Calculate: ab, a2 and b2 for every value
- Step 4: Sum up ab, sum up a2 and sum up b2
- Step 5: Divide the sum of ab by the square root of [(sum of a2) × (sum of b2)]
Developed by Karl Pearson in the 1880's,
Machine learning evaluation metrics | |
---|---|
Regression |
|
Classification |
|
Clustering |
|
Ranking |
|
Computer Vision |
|
NLP |
|
Deep Learning Related Metrics |
|
Recommender system |
|
Similarity |
|
|
| |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
|
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.