< Chemicals
Lead spectrum is for 400 nm - 700 nm. Credit: McZusatz.{{free media}}
A piece of lead, cut through, is silvery for a short time, before the surface oxidizes. Credit: Hi-Res Images of Chemical Elements.{{free media}}

A fresh surface of high purity lead on the left is silvery in appearance.

Isotopes

nuclide
symbol
historic
name
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)[1][n 1]
daughter
isotope(s)[n 2]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
178Pb 82 96 178.003830(26) 0.23(15) ms 0+
179Pb 82 97 179.00215(21)# 3# ms 5/2−#
180Pb 82 98 179.997918(22) 4.5(11) ms 0+
181Pb 82 99 180.99662(10) 45(20) ms α (98%) 177Hg 5/2−#
β+ (2%) 181Tl
182Pb 82 100 181.992672(15) 60(40) ms
[55(+40−35) ms]
α (98%) 178Hg 0+
β+ (2%) 182Tl
183Pb 82 101 182.99187(3) 535(30) ms α (94%) 179Hg (3/2−)
β+ (6%) 183Tl
183mPb 94(8) keV 415(20) ms α 179Hg (13/2+)
β+ (rare) 183Tl
184Pb 82 102 183.988142(15) 490(25) ms α 180Hg 0+
β+ (rare) 184Tl
185Pb 82 103 184.987610(17) 6.3(4) s α 181Hg 3/2−
β+ (rare) 185Tl
185mPb 60(40)# keV 4.07(15) s α 181Hg 13/2+
β+ (rare) 185Tl
186Pb 82 104 185.984239(12) 4.82(3) s α (56%) 182Hg 0+
β+ (44%) 186Tl
187Pb 82 105 186.983918(9) 15.2(3) s β+ 187Tl (3/2−)
α 183Hg
187mPb 11(11) keV 18.3(3) s β+ (98%) 187Tl (13/2+)
α (2%) 183Hg
188Pb 82 106 187.980874(11) 25.5(1) s β+ (91.5%) 188Tl 0+
α (8.5%) 184Hg
188m1Pb 2578.2(7) keV 830(210) ns (8−)
188m2Pb 2800(50) keV 797(21) ns
189Pb 82 107 188.98081(4) 51(3) s β+ 189Tl (3/2−)
189mPb 40(30)# keV 1# min β+ (99.6%) 189Tl (13/2+)
α (.4%) 185Hg
190Pb 82 108 189.978082(13) 71(1) s β+ (99.1%) 190Tl 0+
α (.9%) 186Hg
190m1Pb 2614.8(8) keV 150 ns (10)+
190m2Pb 2618(20) keV 25 µs (12+)
190m3Pb 2658.2(8) keV 7.2(6) µs (11)−
191Pb 82 109 190.97827(4) 1.33(8) min β+ (99.987%) 191Tl (3/2−)
α (.013%) 187Hg
191mPb 20(50) keV 2.18(8) min β+ (99.98%) 191Tl 13/2(+)
α (.02%) 187Hg
192Pb 82 110 191.975785(14) 3.5(1) min β+ (99.99%) 192Tl 0+
α (.0061%) 188Hg
192m1Pb 2581.1(1) keV 164(7) ns (10)+
192m2Pb 2625.1(11) keV 1.1(5) µs (12+)
192m3Pb 2743.5(4) keV 756(21) ns (11)−
193Pb 82 111 192.97617(5) 5# min β+ 193Tl (3/2−)
193m1Pb 130(80)# keV 5.8(2) min β+ 193Tl 13/2(+)
193m2Pb 2612.5(5)+X keV 135(+25−15) ns (33/2+)
194Pb 82 112 193.974012(19) 12.0(5) min β+ (100%) 194Tl 0+
α (7.3×10−6%) 190Hg
195Pb 82 113 194.974542(25) ~15 min β+ 195Tl 3/2#-
195m1Pb 202.9(7) keV 15.0(12) min β+ 195Tl 13/2+
195m2Pb 1759.0(7) keV 10.0(7) µs 21/2−
196Pb 82 114 195.972774(15) 37(3) min β+ 196Tl 0+
α (3×10−5%) 192Hg
196m1Pb 1049.20(9) keV <100 ns 2+
196m2Pb 1738.27(12) keV <1 µs 4+
196m3Pb 1797.51(14) keV 140(14) ns 5−
196m4Pb 2693.5(5) keV 270(4) ns (12+)
197Pb 82 115 196.973431(6) 8.1(17) min β+ 197Tl 3/2−
197m1Pb 319.31(11) keV 42.9(9) min β+ (81%) 197Tl 13/2+
IT (19%) 197Pb
α (3×10−4%) 193Hg
197m2Pb 1914.10(25) keV 1.15(20) µs 21/2−
198Pb 82 116 197.972034(16) 2.4(1) h β+ 198Tl 0+
198m1Pb 2141.4(4) keV 4.19(10) µs (7)−
198m2Pb 2231.4(5) keV 137(10) ns (9)−
198m3Pb 2820.5(7) keV 212(4) ns (12)+
199Pb 82 117 198.972917(28) 90(10) min β+ 199Tl 3/2−
199m1Pb 429.5(27) keV 12.2(3) min IT (93%) 199Pb (13/2+)
β+ (7%) 199Tl
199m2Pb 2563.8(27) keV 10.1(2) µs (29/2−)
200Pb 82 118 199.971827(12) 21.5(4) h β+ 200Tl 0+
201Pb 82 119 200.972885(24) 9.33(3) h EC (99%) 201Tl 5/2−
β+ (1%) 201Tl
201m1Pb 629.14(17) keV 61(2) s 13/2+
201m2Pb 2718.5+X keV 508(5) ns (29/2−)
202Pb 82 120 201.972159(9) 52.5(28)×103 y Electron capture (EC) (99%) 202Tl 0+
α (1%) 198Hg
202m1Pb 2169.83(7) keV 3.53(1) h IT (90.5%) 202Pb 9−
EC (9.5%) 202Tl
202m2Pb 4142.9(11) keV 110(5) ns (16+)
202m3Pb 5345.9(13) keV 107(5) ns (19−)
203Pb 82 121 202.973391(7) 51.873(9) h EC 203Tl 5/2−
203m1Pb 825.20(9) keV 6.21(8) s IT 203Pb 13/2+
203m2Pb 2949.47(22) keV 480(7) ms 29/2−
203m3Pb 2923.4+X keV 122(4) ns (25/2−)
204Pb[n 3] 82 122 203.9730436(13) Observationally Stable[n 4] 0+ 0.014(1) 0.0104–0.0165
204m1Pb 1274.00(4) keV 265(10) ns 4+
204m2Pb 2185.79(5) keV 67.2(3) min 9−
204m3Pb 2264.33(4) keV 0.45(+10−3) µs 7−
205Pb 82 123 204.9744818(13) 15.3(7)×106 y EC 205Tl 5/2−
205m1Pb 2.329(7) keV 24.2(4) µs 1/2−
205m2Pb 1013.839(13) keV 5.55(2) ms 13/2+
205m3Pb 3195.7(5) keV 217(5) ns 25/2−
206Pb[n 3][n 5] Radium G 82 124 205.9744653(13) Observationally Stable[n 6] 0+ 0.241(1) 0.2084–0.2748
206m1Pb 2200.14(4) keV 125(2) µs 7−
206m2Pb 4027.3(7) keV 202(3) ns 12+
207Pb[n 3][n 7] Actinium D 82 125 206.9758969(13) Observationally Stable[n 8] 1/2− 0.221(1) 0.1762–0.2365
207mPb 1633.368(5) keV 806(6) ms IT 207Pb 13/2+
208Pb[n 9] Thorium D 82 126 207.9766521(13) Observationally Stable[n 10] 0+ 0.524(1) 0.5128–0.5621
208mPb 4895(2) keV 500(10) ns 10+
209Pb 82 127 208.9810901(19) 3.253(14) h β 209Bi 9/2+ Trace[n 11]
210Pb Radium D
Radiolead
Radio-lead
82 128 209.9841885(16) 22.3(22) y β (100%) 210Bi 0+ Trace[n 12]
α (1.9×10−6%) 206Hg
210mPb 1278(5) keV 201(17) ns 8+
211Pb Actinium B 82 129 210.9887370(29) 36.1(2) min β 211Bi 9/2+ Trace[n 13]
212Pb Thorium B 82 130 211.9918975(24) 10.64(1) h β 212Bi 0+ Trace[n 14]
212mPb 1335(10) keV 5(1) µs (8+)
213Pb 82 131 212.996581(8) 10.2(3) min β 213Bi (9/2+)
214Pb Radium B 82 132 213.9998054(26) 26.8(9) min β 214Bi 0+ Trace[n 12]
215Pb 82 133 215.00481(44)# 36(1) s 5/2+#
  1. Abbreviations:
    EC: Electron capture
    IT: Isomeric transition
  2. Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe)
  3. 1 2 3 Used in lead-lead dating
  4. Believed to undergo α decay to 200Hg with a half-life over 1.4×1020 years
  5. Final decay product of 4n+2 decay chain (the Radium or Uranium series)
  6. Believed to undergo α decay to 202Hg with a half-life over 2.5×1021 years
  7. Final decay product of 4n+3 decay chain (the Actinium series)
  8. Believed to undergo α decay to 203Hg with a half-life over 1.9×1021 years
  9. Final decay product of 4n decay chain (the Thorium series)
  10. Heaviest observationally stable nuclide, believed to undergo α decay to 204Hg with a half-life over 2.6×1021 years
  11. Cluster decay product of 223Ra, which occurs in the decay chain of 235U
  12. 1 2 Intermediate decay product of 238U
  13. Intermediate decay product of 235U
  14. Intermediate decay product of 232Th

Notes

  • Evaluated isotopic composition is for most but not all commercial samples.
  • The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

P processes

"Lead-202 would be produced in the oxygen zone as a p-process nuclide."[2]

"The firm estimate of the capture rate for the first time base on experimental value allowed reaching two important conclusions with respect to the s-process nucleosynthesis in this mass region: i) the classical model, based on the phenomenological study of the s-process fails to produce consistent result of the branching at 151
Sm
and 147
Pm
, ii) the p-process contribution to the production of 152
Gd
can amount up 30 % of the solar-system observed abundance [5]."[3]

R processes

In the r-process (r is for "rapid"), captures happen faster than nuclei can decay.

  1. 176
    Tl
    (n,β-)176
    Pb
  2. 177
    Tl
    (n,β-)177
    Pb
  3. 178
    Tl
    (n,β-)178
    Pb
  4. 179
    Tl
    (n,β-)179
    Pb
  5. 180
    Tl
    (n,β-)180
    Pb
  6. 181
    Tl
    (n,β-)181
    Pb
  7. 182
    Tl
    (n,β-)182
    Pb
  8. 183
    Tl
    (n,β-)183
    Pb
  9. 184
    Tl
    (n,β-)184
    Pb
  10. 185
    Tl
    (n,β-)185
    Pb
  11. 186
    Tl
    (n,β-)186
    Pb
  12. 187
    Tl
    (n,β-)187
    Pb
  13. 188
    Tl
    (n,β-)188
    Pb
  14. 189
    Tl
    (n,β-)189
    Pb
  15. 190
    Tl
    (n,β-)190
    Pb
  16. 191
    Tl
    (n,β-)191
    Pb
  17. 192
    Tl
    (n,β-)192
    Pb
  18. 193
    Tl
    (n,β-)193
    Pb
  19. 194
    Tl
    (n,β-)194
    Pb
  20. 195
    Tl
    (n,β-)195
    Pb
  21. 196
    Tl
    (n,β-)196
    Pb
  22. 197
    Tl
    (n,β-)197
    Pb
  23. 198
    Tl
    (n,β-)198
    Pb
  24. 199
    Tl
    (n,β-)199
    Pb
  25. 200
    Tl
    (n,β-)200
    Pb
  26. 201
    Tl
    (n,β-)201
    Pb
  27. 205
    Tl
    (n,β-)205
    Pb
  28. 206
    Tl
    (n,β-)206
    Pb
  29. 207
    Tl
    (n,β-)207
    Pb
  30. 208
    Tl
    (n,β-)208
    Pb
  31. 209
    Tl
    (n,β-)209
    Pb
  32. 210
    Tl
    (n,β-)210
    Pb
  33. 211
    Tl
    (n,β-)211
    Pb

S processes

All four stable lead isotopes 204
Pb
, 206
Pb
, 207
Pb
, and 208
Pb
are produced by S-process nucleosynthesis on thallium and on 206
Pb
and 207
Pb
.

Thallium isotopes

nuclide
symbol
historic
name
Z(proton) N(neutron)  
isotopic mass (u)
 
half-life decay
mode(s)[4][n 1]
daughter
isotope(s)[n 2]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
204Tl 81 123 203.9738635(13) 3.78(2) y β (97.1%) 204Pb 2−
EC (2.9%) 204Hg
204m1Tl 1104.0(4) keV 63(2) µs (7)+
204m2Tl 2500(500) keV 2.6(2) µs (12−)
204m3Tl 3500(500) keV 1.6(2) µs (20+)
205Tl[n 3] 81 124 204.9744275(14) Observationally stable[n 4] 1/2+ 0.7048(1) 0.70472–0.70506
205m1Tl 3290.63(17) keV 2.6(2) µs 25/2+
205m2Tl 4835.6(15) keV 235(10) ns (35/2–)
206Tl Radium E'' 81 125 205.9761103(15) 4.200(17) min β 206Pb 0− Trace[n 5]
206mTl 2643.11(19) keV 3.74(3) min IT 206Tl (12–)
207Tl Actinium C'' 81 126 206.977419(6) 4.77(2) min β 207Pb 1/2+ Trace[n 6]
207mTl 1348.1(3) keV 1.33(11) s IT (99.9%) 207Tl 11/2–
β (.1%) 207Pb
208Tl Thorium C'' 81 127 207.9820187(21) 3.053(4) min β 208Pb 5(+) Trace[n 7]
209Tl 81 128 208.985359(8) 2.161(7) min β 209Pb (1/2+)
210Tl Radium C″ 81 129 209.990074(12) 1.30(3) min β (99.991%) 210Pb (5+)# Trace[n 5]
β, neutron emission (n) (.009%) 209Pb
  1. Abbreviations:
    EC: Electron capture
    IT: Isomeric transition
  2. Bold for stable isotopes
  3. Final decay product of 4n+1 decay chain (the Neptunium series)
  4. Believed to undergo α decay to 201Au
  5. 1 2 Intermediate decay product of 238U
  6. Intermediate decay product of 235U
  7. Intermediate decay product of 232Th

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

Decay chains

"Three radioactive series are known in nature, the thorium series (mass number 4n where n is an integer), the uranium series (4n + 2) and the actinium series (4n + 3)."[5]

The Neptunian Series is the 4n + 1 series.[5]

Actinium series

Decay chain 4n+3: Actinium series, dashed arrow is a decay mode with < 1% probability, dotted arrows are decay modes with < 0.01% probability. Credit: Edgar Bonet.{{free media}}
nuclide historic name (short) historic name (long) decay mode half-life
(a=year)
energy released, MeV product of decay
251
Cf
alpha decay 900.6 a 6.176 247
Cm
247
Cm
α 1.56·107 a 5.353 243
Pu
243
Pu
β 4.95556 h 0.579 243
Am
243
Am
α 7388 a 5.439 239
Np
239
Np
β 2.3565 d 0.723 239Pu
239
Pu
α 2.41·104 a 5.244 235
U
235
U
AcU Actin Uranium α 7.04·108 a 4.678 231
Th
231
Th
UY Uranium Y β 25.52 h 0.391 231
Pa
231
Pa
Pa Protactinium α 32760 a 5.150 227
Ac
227
Ac
Ac Actinium β 98.62%
α 1.38%
21.772 a 0.045
5.042
227
Th

223
Fr
227
Th
RdAc Radioactinium α 18.68 d 6.147 223
Ra
223
Fr
AcK Actinium K β 99.994%
α 0.006%
22.00 min 1.149
5.340
223
Ra

219
At
223
Ra
AcX Actinium X α 11.43 d 5.979 219
Rn
219
At
α 97.00%
β 3.00%
56 s 6.275
1.700
215
Bi

219
Rn
219
Rn
An Actinon,
Actinium Emanation
α 3.96 s 6.946 215
Po
215
Bi
β 7.6 min 2.250 215
Po
215
Po
AcA Actinium A α 99.99977%
β 0.00023%
1.781 ms 7.527
0.715
211
Pb

215
At
215
At
α 0.1 ms 8.178 211
Bi
211
Pb
AcB Actinium B β 36.1 min 1.367 211
Bi
211
Bi
AcC Actinium C α 99.724%
β 0.276%
2.14 min 6.751
0.575
207
Tl

211
Po
211
Po
AcC' Actinium C' α 516 ms 7.595 207
Pb
207
Tl
AcC" Actinium C" β 4.77 min 1.418 207
Pb
207
Pb
AcD Actinium D . stable . .

Neptunium series

Decay chain 4n+1 is the Neptunium series. Credit: BatesIsBack.

The Neptunium Series has been composed.[6]

nuclide decay mode half-life
(a=year)
energy released, MeV product of decay
249
Cf
α 351 a 5.813+.388 245
Cm
245
Cm
α 8500 a 5.362+.175 241
Pu
241
Pu
β 14.4 a 0.021 241
Am
241
Am
α 432.7 a 5.638 237
Np
237
Np
α 2.14·106 a 4.959 233
Pa
233
Pa
β 27.0 d 0.571 233
U
233
U
α 1.592·105 a 4.909 229
Th
229
Th
α 7340 a 5.168 225
Ra
225
Ra
β 14.9 d 0.36 225
Ac
225
Ac
α 10.0 d 5.935 221
Fr
221
Fr
α 4.8 min 6.3 217
At
217
At
α 32 ms 7.0 213
Bi
213
Bi
β 97.80%
α 2.20%
46.5 min 1.423
5.87
213
Po

209
Tl
213
Po
α 3.72 μs 8.536 209
Pb
209
Tl
β 2.2 min 3.99 209
Pb
209
Pb
β 3.25 h 0.644 209
Bi
209
Bi
α 1.9·1019 a 3.137 205
Tl
205
Tl
. stable . .

Thorium series

Decay chain 4n is the Thorium series. Credit: BatesIsBack. {{free media}}
nuclide historic name (short) historic name (long) decay mode half-life
(a=year)
energy released, MeV product of decay
252
Cf
α 2.645 a 6.1181 248
Cm
248
Cm
α 3.4×105 a 5.162 244
Pu
244
Pu
α 8×107 a 4.589 240
U
240
U
β 14.1 h .39 240
Np
240
Np
β 1.032 h 2.2 240
Pu
240
Pu
α 6561 a 5.1683 236
U
236
U
Thoruranium[7] α 2.3×107 a 4.494 232
Th
232
Th
Th Thorium α 1.405×1010 a 4.081 228
Ra
228
Ra
MsTh1 Mesothorium 1 β 5.75 a 0.046 228
Ac
228
Ac
MsTh2 Mesothorium 2 β 6.25 h 2.124 228
Th
228
Th
RdTh Radiothorium α 1.9116 a 5.520 224
Ra
224
Ra
ThX Thorium X α 3.6319 d 5.789 220
Rn
220
Rn
Tn Thoron,
Thorium Emanation
α 55.6 s 6.404 216
Po
216
Po
ThA Thorium A α 0.145 s 6.906 212
Pb
212
Pb
ThB Thorium B β 10.64 h 0.570 212
Bi
212
Bi
ThC Thorium C β 64.06%
α 35.94%
60.55 min 2.252
6.208
212
Po

208
Tl
212Po ThC′ Thorium C′ α 299 ns 8.955 208
Pb
208
Tl
ThC″ Thorium C″ β 3.053 min 4.999 208
Pb
208
Pb
ThD Thorium D stable . . .

Uranium series

(More comprehensive graphic) Decay chain 4n + 2 is the Uranium series. Credit: Tosaka.
parent nuclide historic name (short)
historic name (long) atomic mass [RS 1] decay mode [RS 2] branch chance [RS 2] half life [RS 2] energy released, MeV [RS 2] daughter nuclide [RS 2] Subtotal MeV
238
U
UI Uranium I 238.051 α]] 100 % 4.468·109 a 4.26975 234
Th
4.2698
234
Th
UX1 Uranium X1 234.044 β 100 % 24.10 d 0.273088 234
Pa
4.5428
234m
Pa
UX2, Bv Uranium X2, Brevium 234.043 isomeric transition (IT) 0.16 % 1.159 min 0.07392 234
Pa
4.6168
234m
Pa
UX2, Bv Uranium X2, Brevium 234.043 β 99.84 % 1.159 min 2.268205 234
U
6.8110
234
Pa
UZ Uranium Z 234.043 β 100 % 6.70 h 2.194285 234
U
6.8110
234
U
UII Uranium II 234.041 α 100 % 2.455·105 a 4.8598 230
Th
11.6708
230
Th
Io Ionium 230.033 α 100 % 7.54·104 a 4.76975 226
Ra
16.4406
226
Ra
Ra Radium 226.025 α 100 % 1600 a 4.87062 222
Rn
21.3112
222Rn Rn Radon, Radium Emanation 222.018 α 100 % 3.8235 d 5.59031 218Po 26.9015
218Po RaA Radium A 218.009 β 0.020 % 3.098 min 0.259913 218At 27.1614
218Po RaA Radium A 218.009 α 99.980 % 3.098 min 6.11468 214Pb 33.0162
218At 218.009 β 0.1 % 1.5 s 2.881314 218Rn 30.0428
218At 218.009 α 99.9 % 1.5 s 6.874 214Bi 34.0354
218Rn 218.006 α 100 % 35 ms 7.26254 214Po 37.3053
214Pb RaB Radium B 214.000 β 100 % 26.8 min 1.019237 214Bi 34.0354
214Bi RaC Radium C 213.999 β 99.979 % 19.9 min 3.269857 214Po 37.3053
214Bi RaC Radium C 213.999 α 0.021 % 19.9 min 5.62119 210Tl 39.6566
214Po RaC' Radium C' 213.995 α 100 % 164.3 μs 7.83346 210Pb 45.1388
210Tl RaC" Radium C" 209.990 β 100 % 1.30 min 5.48213 210Pb 45.1388
210Pb RaD Radium D 209.984 β 100 % 22.20 a 0.063487 210Bi 45.2022
210Pb RaD Radium D 209.984 α 1.9·10−6 % 22.20 a 3.7923 206Hg 48.9311
210Bi RaE Radium E 209.984 β 100 % 5.012 d 1.161234 210Po 46.3635
210Bi RaE Radium E 209.984 α 13.2·10−5 % 5.012 d 5.03647 206Tl 50.2387
210Po RaF Radium F 209.983 α 100 % 138.376 d 5.40745 206Pb 51.7709
206Hg 205.978 β 100 % 8.32 min 1.307649 206Tl 50.2387
206Tl RaE" Radium E" 205.976 β 100 % 4.202 min 1.532221 206Pb 51.7709
206Pb RaG Radium G 205.974 stable - - - - 51.7709
  1. The Risk Assessment Information System: Radionuclide Decay Chain. The University of Tennessee.
  2. 1 2 3 4 5 Evaluated Nuclear Structure Data File. National Nuclear Data Center.

Structures

Unit cell of the diamond cubic crystal structure is rotating. Credit: Brian0918.
Rotating model of the diamond cubic crystal structure shows both (0,12,12) and (14,14,14) fcc structure points. Credit: MarinaVladivostok.

"Diamond cubic structures with lattice parameters around the lattice parameter of silicon exists both in thin lead and tin films, and in massive lead and tin, freshly solidified in vacuum of ≈5 x 10-6 Torr. Experimental evidence for almost identical structures of at least three oxide types is presented, demonstrating that lead and tin behave like silicon not only in the initial stages of crystallization, but also in the initial stages of oxidation."[8]

Diamond cubic structure is in the Fd3m space group no. 227, which is the face-centered cubic Bravais lattice with two atoms on each face, one at (0,12,12) and the other at (14,14,14) instead of one.[9]

Lead alloys

This is a lead alloy stud, with a raised cross and three pellets in each quadrant, between 1400 and 1600. Credit: Portable Antiquities Scheme (PAS).{{free media}}

Lead alloys, or lead-based alloys, have the highest atomic percent lead.

Lithiums

"Ab initio total energy calculations are used to investigate the structural trends of equiatomic solid APb alloys (A=Li, Na, K). [...] Charged Pb4 tetrahedral units dominate the structural and electronic properties and these units are remarkably robust and insensitive to their alkali environment. The stability of the Pb4 units diminishes as we progress from K to Li and leads to their absence in the LiPb alloy in accordance with experiment."[10]

Sodiums

"The technical product was cookled with caustic soda, dried over barium oxide, and subsequently distilled fractionally from sodium-lead alloy (NaPb)."[11]

Calciums

"Two volts, three plates lead-acid cells with lead-calcium alloys were studied. [To] improve the cycle life of lead-calcium alloy cells, additives like antimony sulphate to the positive active material and phosphoric acid to the electrolyte were added separately and in combination."[12]

Coppers

Molybdochalkos is an alloy that contains 90% lead 10% copper.

"For instance, once your priest Neilos provoked laughter, when he roasted molybdochalkos in a baking-oven: so that, if one adds some 'bread' (ie slabs of molybdochalkos / magnēsia),43 he ends up kindling (the fire) with kōbathia (arsenic ores) all day long.44"[13]

Silvers

"Pure lead, lead-silver and antimonial lead grids were also included for the purpose of comparison."[12]

Cadmiums

"Immediately after dissection, the body of the scapula was embedded in an open-top steel box using molten metal (lead-cadmium alloy), allowing the upper part of the spine, glenoid, and coracoid to protrude [...]."[14]

Indiums

"Pb–In nanosized alloy particles [can be] embedded in an aluminum matrix. [At] small sizes, the Pb–In alloys particles are single-phase solid solution having fcc structure at the composition range covering both Pb and In rich regions."[15]

Tins

Babbitt alloys designated "heavy pressure" - 72.5–76.5 % Pb, "royal" - 77.9–81.2 % Pb, "grade 13" - 82.5–85 % Pb and "durite" - 79.9–83.9 % Pb with Sn, Cu, Sb, and As.

Lead tin telluride, Pb1−xSnxTe, is a IV-VI narrow band gap semiconductor. The band gap of Pb1−xSnxTe is tuned by varying the composition (x). SnTe can be alloyed with Pb (or PbTe with Sn) in order to tune the band gap from 0.29 eV (PbTe) to 0.18 eV (SnTe). The band gap in Pb1−xSnxTe does not change linearly between the two extremes. As the composition (x) of Sn is increased, the band gap decreases, approaches zero in the concentration regime (0.32-0.65 corresponding to temperature 4-300 K respectively) and further increases towards bulk band gap of SnTe.[16]

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Tin-lead (Sn-Pb) solders, also called soft solders, are commercially available with tin concentrations between 5% and 70% by weight. The greater the tin concentration, the greater the solder’s tensile and shear strengths. Historically, lead has been widely believed to mitigate the formation of tin whiskers, though the precise mechanism for this is unknown.[17] Today, many techniques are used to mitigate the problem, including changes to the annealing process (heating and cooling), addition of elements like copper and nickel, and the inclusion of conformal coatings.[18] Alloys commonly used for electrical soldering are 60/40 Sn-Pb, which melts at 188 °C (370 °F),[19]

Lead-tin solders readily dissolve gold plating and form brittle intermetallics.[20][21][22] 60/40 Sn-Pb solder oxidizes on the surface, forming a complex 4-layer structure: tin(IV) oxide on the surface, below it a layer of tin(II) oxide with finely dispersed lead, followed by a layer of tin(II) oxide with finely dispersed tin and lead, and the solder alloy itself underneath.[23]

Pb90Sn10 designated 268/302[24] 275/302[25] Sn10, UNS L54520, ASTM10B, is used for: balls in ceramic ball grid array (CBGA) components, replaced by Sn95.5Ag3.9Cu0.6,[26] low cost and good bonding properties, rapidly dissolves gold and silver, not recommended for those,[27] fabrication of car radiators and fuel tanks, coating and bonding of metals in moderate service temperatures, body solder,[28], has low thermal EMF, an alternative to Cd70 where parasitic thermocouple voltage has to be avoided.[29]

Pb88Sn12 254/296[28] is used for fabrication of car radiators and fuel tanks, coating and bonding of metals for moderate service temperatures, body solder.

Pb85Sn15 227/288[28] is used for coating tubes and sheets and fabrication of car radiators, body solder.

Pb80Sn20 183/280[25] Sn20, UNS L54711 is used for coating radiator tubes for joining fins.[28]

Pb80Sb15Sn5 570 °C (1,058 °F) White Metal Capping is used for locking mineshaft winding ropes into their tapered end sockets or 'capels'.[30]

Pb75Sn25 183/266[24] is a crude solder for construction plumbing works, flame-melted soldering car engine radiators, machine, dip and hand soldering of plumbing fixtures and fittings, superior body solder.[28]

Pb70Sn30 185/255[24] 183/257[25] Sn30, UNS L54280, crude solder for construction plumbing works, flame-melted, good for machine and torch soldering,[31] soldering car engine radiators, machine, dip and hand soldering of plumbing fixtures and fittings, superior body solder.[28]

Pb68Sn32 253 "Plumber solder", for construction plumbing works[32]

Pb68Sn30Sb2 185/243[25] is Pb68

Sn30Pb50Zn20 177/288[33] Kapp GalvRepair Economical solder for repairing & joining most metals including Aluminum and cast Iron, have been used for cast Iron and galvanized surface repair.[33]

Sn33Pb40Zn28 230/275[33] Economical solder for repairing & joining most metals including Aluminum and cast Iron, have been used for cast Iron and galvanized surface repair.[33]

Pb67Sn33 187–230 PM 33, crude solder for construction plumbing works, flame-melted, temperature depends on additives.

Pb65Sn35 183/250[25] Sn35 is used as a cheaper alternative of Sn60Pb40 for wiping and sweating joints.[28]

Pb60Sn40 183/238[24] 183/247[25] Sn40, UNS L54915, is used for soldering of brass and car radiators,[31] bulk soldering, and where wider melting point range is desired, joining cables, wiping and joining lead pipes, repairs of radiators and electrical systems.[28]

Pb55Sn45 183/227[28] is used for soldering radiator cores, roof seams, and for decorative joints.

Sn50Pb50 183/216[24] 183–212[25] Sn50, UNS L55030, is used for "Ordinary solder", soldering of brass, electricity meters, gas meters, formerly also tin cans, general purpose, standard tinning and sheetmetal work, becomes brittle below −150 °C.[20][32] low cost and good bonding properties, rapidly dissolves gold and silver, not recommended for those,[27] wiping and assembling plumbing joints for non-potable water.[28]

Sn40Pb42Cd18 145[34] is used for low melting temperature allows repairing pewter and zinc objects, including die-cast toys.

Antimonies

Bricks of lead (alloyed with 4% antimony) are used as radiation shielding. Credit: Loren Chang.{{free media}}

One Linotype alloy is composed of lead with 12% antimony and 4% tin.[35]

Lead bricks used for radiation shielding are alloyed with 4 % antimony.[36]

"The performance with the additives was equivalent to that of the lead-antimony alloy cells."[12]

Thalliums

There is "a lead-thallium alloy corresponding in composition to PbTl2".[37]

"The adiabatic elastic constants of seven fcc lead-thallium alloy single crystals have been measured by the ultrasonic pulse-echo technique over the composition range 5–72 at.% thallium and over the temperature range 4.2–300°K."[38]

Bismuths

"Liquid lead and the eutectic lead–bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes."[39]

There is "an alloy of 65 per cent lead and 35 per cent bismuth."[37]

Intermetallics

"Magnetic susceptibilities of the series of intermetallics represented by the formula RPb3 (R = Ce, Pr, Nd, Sm, Eu and Gd) are reported for temperatures ranging from 2.8 to 300°K."[40]

The lead-gold intermetallics: AuPb
3
(novodneprite) and AuPb
2
(anyuiite) occur.[41]

Inorganics

Plumbane, PbH4, is a metal hydride and group 14 hydride.[42] Plumbane is not well-characterized or well-known, and it is thermodynamically unstable with respect to the loss of a hydrogen atom.[43] Derivatives of plumbane include lead tetrafluoride, (PbF4), and tetraethyllead, ((CH3CH2)4Pb).

Lead dioxides

A sample of lead(IV) oxide (PbO2) powder is shown. Credit: Walkerma.{{free media}}

Lead(IV) oxide is commonly called lead dioxide, plumbic oxide or anhydrous plumbic acid.[44]

Organoleads

The fundamental properties and ultimate performance limits of organolead trihalide MAPbX
3
(MA = CH
3
NH+
3
; X = Br
1
or I
1
) perovskites remain obscured by extensive disorder in polycrystalline MAPbX 3 films.[45]

"Solid state hybrid solar cells with hybrid organolead halide perovskites (CH3NH3PbBr3 and CH3NH3PbI3) as light harvesters and p-type polymer poly[N-9-hepta-decanyl-2,7-carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-di-hydropyrrolo[3,4-]pyrrole-1,4-dione] (PCBTDPP) as a hole transporting material [occur]. The CH3NH3PbBr3-sensitized hybrid devices display an outstanding open circuit voltage (Voc) of ∼1.15 V, and the CH3NH3PbI3-based cells exhibit a power conversion efficiency (PCE) of ∼5.55% along with high stability. [...] PCBTDPP is superior to the model p-type polymer P3HT as a HTM in these hybrid solar cells to achieve remarkably high Voc and high PCE."[46]

Organolead compounds include tetramethyl lead (TML), tetraethyl lead (TEL), triethyl lead (TREL), dimethyl lead (DML), diethyl lead (DEL), methyl ethyl lead (MEL), tetrabutyl lead (TeBL), and dialkyl lead (DAL).

Native leads

This is a piece of native lead. Credit: Rob Lavinsky.{{free media}}

The piece of native lead on the right shows a relatively sharp, and well-formed cuboctahedron of Lead at the top of the specimen, which is associated with elongated crystals on the base and back.

Its source locality is Långban, Filipstad, Värmland, Sweden.

Litharges

Litharge is one of the natural mineral forms of lead(II) oxide, PbO. Credit: Hubertus Giefers.{{free media}}
This litharge specimen is from "An der Seilbahn" slag locality, Hüsten, Arnsberg, Sauerland, North Rhine-Westphalia, Germany. Credit: Elmar Lackner, with permission.{{fairuse}}

Litharge is a secondary mineral which forms from the oxidation of galena ores. Z = 2 chemical formula units per unit cell. It is dimorphous with the orthorhombic form massicot.

Massicots

Massicot is one of the natural mineral forms of lead(II) oxide, PbO. Credit: Hubertus Giefers.{{free media}}

Massicot is lead (II) oxide mineral with an orthorhombic lattice structure, Z = 4.

Galenas

This piece features a pristine, 3-dimensional, superb galena crystal sitting perfectly atop matrix. Credit: Rob Lavinsky.{{free media}}

Galena in the image on the right is the metallic cuboidal crystal atop a matrix. Galena is PbS, 50 atomic % lead and 50 atomic % sulfur. Each cubic unit cell contains four PbS molecules in a face-centered cubic lattice.

Minium

Minium druse is on cerussite from the Old Yuma Mine, Tucson Mountains, Arizona. Credit: Robert M. Lavinsky.{{free media}}

Minium is Pb2+2Pb4+O4 that crystallizes in the Tetragonal, Ditetragonal dipyramidal (4/mmm) class: (4/m 2/m 2/m).[47]

Minium is rare and occurs in lead-mineral deposits that have been subjected to severe oxidizing conditions and is associated with cerussite, galena, litharge, massicot, mimetite, native lead, and wulfenite.[47]

See also

References

  1. Universal Nuclide Chart. nucleonica. Retrieved 2013-08-28.
  2. A.G.W. Cameron and J.W.Truran (March 1977). "The supernova trigger for formation of the solar system". Icarus 30 (3): 447-461. doi:10.1016/0019-1035(77)90101-4. http://www.sciencedirect.com/science/article/pii/0019103577901014. Retrieved 2017-12-23.
  3. G.Tagliente, U.Abbondanno, G.Aerts, H.Alvarez, F.Alvarez-Velarde, S.Andriamonje, J.Andrzejewski, P.Assimakopoulos, L.Audouin, G.Badurek, P.Baumann, F.Bečvář, F.Belloni, E.Berthoumieux, F.Calviño, M.Calviani, D.Cano-Ott, R.Capote, C.Carrapiço, P.Cennini, V.Chepel, E.Chiaveri, N.Colonna, G.Cortes, A.Couture, J.Cox, M.Dahlfors, S.David, I.Dillman, C.Domingo-Pardo, W.Dridi, I.Duran, C.Eleftheriadis, M.Embid-Segura, L.Ferrant, A.Ferrari, R.Ferreira-Marques, K.Fujii, W.Furman, I.Goncalves, E.Gonzalez-Romero, F.Gramegna, C.Guerrero, F.Gunsing, M.Heil, A.Herrera-Martinez, E.Jericha, F.Käppeler, Y.Kadi, D.Karadimos, D.Karamanis, M.Kerveno, E.Kossionides, M.Krtička, C.Lamboudis, H.Leeb, A.Lindote, I.Lopes, M.Lozano, S.Lukic, J.Marganiec, S.Marrone, T.Martınez, C.Massimi, P.Mastinu, A.Mengoni, P.M.Milazzo, M.Mosconi, F.Neves, H.Oberhummer, S.O’Brien, J.Pancin, C.Papachristodoulou, C.Paradela, N.Patronis, A.Pavlik, P.Pavlopoulos, L.Perrot, R.Plag, A.Plukis, A.Poch, J.Praena, C.Pretel, J.Quesada, R.Reifarth, C.Rubbia, G.Rudolf, J.Salgado, C.Santos, L.Sarchiapone, I.Savvidis, C.Stephan, G.Tagliente, J. L.Tain, L.Tassan-Got, L.Tavora, R.Terlizzi, G.Vannini, P.Vaz, A.Ventura, D.Villamarin, M.C.Vincente, V.Vlachoudis, R.Vlastou, F.Voss, S.Walter, M.Wiescher, and K.Wisshak (August 2010). "ASTROPHYSICS AT n_TOF FACILITY". AIP Conference Proceedings 1265 (1): 160. doi:10.1063/1.3480156. https://pdfs.semanticscholar.org/f38f/86aa84bdf57c56a783b376257c4b4f3a50d5.pdf. Retrieved 2017-12-24.
  4. "Universal Nuclide Chart". nucleonica.
  5. 1 2 Albert C. English (1947). The 4n+1 radioactive series (PDF). Old Elvet, Durham: Durham University. p. 80. Retrieved 2017-12-28.
  6. G. Audi, A. H. Wapstra, C. Thibault, J. Blachot, O. Bersillon (November 2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A 729: 3–128. doi:10.1016/j.nuclphysa.2003.11.001. https://hal.archives-ouvertes.fr/in2p3-00020241/document. Retrieved 2017-12-28.
  7. Thaddeus J. Trenn (1978). "Thoruranium (U-236) as the extinct natural parent of thorium: The premature falsification of an essentially correct theory". Annals of Science 35 (6): 581–97. doi:10.1080/00033797800200441.
  8. S.K. Peneva, K.D. Djuneva and E.A. Tsukeva (2 May 1981). "RHEED study of the initial stages of crystallization and oxidation of lead and tin". Journal of Crystal Growth 53 (2): 382-396. doi:10.1016/0022-0248(81)90088-9. http://www.sciencedirect.com/science/article/pii/0022024881900889. Retrieved 2017-12-13.
  9. Norman F. M. Henry and Kathleen Lonsdale (1969). The 230 Three-Dimensional Space Groups, In: International Tables for X-ray Crystallography, Volume I Symmetry Groups, 3rd edition. Birmingham, England: The Kynoch Press. p. 341. Retrieved 2017-12-22.
  10. L.M. Molina, J.A. Alonso and M.J. Stott (20 October 1998). "Building alkali-lead intermetallic compounds from clusters". Solid State Communications 108 (8): 519-524. doi:10.1016/S0038-1098(98)00415-3. http://www.sciencedirect.com/science/article/pii/S0038109898004153. Retrieved 2017-12-27.
  11. Charles A. Kraus and Raymond M. Fuoss (January 1933). "Properties of Electrolytic Solutions. I. Conductance as Influenced by the Dielectric Constant of the Solvent Medium". Journal of the American Chemical Society 55 (1): 21–36. doi:10.1021/ja01328a003. http://pubs.acs.org/doi/abs/10.1021/ja01328a003?journalCode=jacsat. Retrieved 2017-12-21.
  12. 1 2 3 R. Janakiraman, P.G. Balakrishnan, M. Devasahayam, and S. Palanichamy (1988). "Lead-cadmium alloy for lead-acid battery-effect of additives on cycling". Bulletin of Electrochemistry 04 (06): 563-564. http://cecri.csircentral.net/id/eprint/2081. Retrieved 2017-12-21.
  13. Matteo Martelli (June 2017). "Alchemy, Medicine and Religion: Zosimus of Panopolis and the Egyptian Priests". Religion in the Roman Empire 3 (2): 202-220. doi:10.1628/219944617X15008820103379. http://www.ingentaconnect.com/contentone/mohr/rre/2017/00000003/00000002/art00005. Retrieved 2017-12-21.
  14. Richard I. Harris, Andrew L. Wallace, Gareth D. Harper, Jerome A. Goldberg, David H. Sonnabend, William R. Walsh (1 January 2000). "Structural properties of the intact and the reconstructed coracoclavicular ligament complex". The American Journal of Sports Medicine 28 (1): 103-108. doi:10.1177/03635465000280010201. https://www.researchgate.net/profile/William_Walsh/publication/12660349_Structural_Properties_of_the_Intact_and_the_Reconstructed_Coracoclavicular_Ligament_Complex/links/567784c508aebcdda0e96541.pdf. Retrieved 2017-12-21.
  15. P. Bhattacharya and K. Chattopadhyay (October & December 2005). "PHASE FORMATION AND TRANSFORMATION OF EMBEDDED ALLOY NANOPARTICLES: CASE OF LEAD INDIUM ALLOY PARTICLES IN ALUMINUM". International Journal of Nanoscience 04 (05-06): 909-920. doi:10.1142/S0219581X05003875. http://www.worldscientific.com/doi/abs/10.1142/S0219581X05003875. Retrieved 2017-12-21.
  16. J. O. Dimmock, I. Melngailis and A. J. Strauss (1966). "Band Structure and Laser Action inPbxSn1−x Te". Physical Review Letters 16 (26): 1193. doi:10.1103/PhysRevLett.16.1193.
  17. Basic Information Regarding Tin Whiskers
  18. Craig Hillman; Gregg Kittlesen; Randy Schueller. "A New (Better) Approach to Tin Whisker Mitigation" (PDF). DFR Solutions. Retrieved 23 October 2013.
  19. http://www.farnell.com/datasheets/315929.pdf
  20. 1 2 Howard H. Manko (2001). Solders and soldering: materials, design, production, and analysis for reliable bonding. McGraw-Hill Professional. p. 164. ISBN 0-07-134417-9.
  21. msl747.PDF. (PDF). Retrieved 2010-07-06.
  22. John H. Lau (1991). Solder joint reliability: theory and applications. Springer. p. 178. ISBN 0-442-00260-2.
  23. A. C. Tan (1989). Lead finishing in semiconductor devices: soldering. World Scientific. p. 45. ISBN 9971-5-0679-3.
  24. 1 2 3 4 5 Charles A. Harper (2003). Electronic materials and processes. McGraw-Hill Professional. pp. 5–8. ISBN 0-07-140214-4.
  25. 1 2 3 4 5 6 7 Alloy information
  26. Ganesan and Pecht p. 110
  27. 1 2 Ray P. Prasad (1997). Surface mount technology: principles and practice. Springer. p. 385. ISBN 0-412-12921-3.
  28. 1 2 3 4 5 6 7 8 9 10 SOLDER ALLOYS Selection Chart. Retrieved 2010-07-06.
  29. http://www.analog.com/library/analogDialogue/archives/39-05/Web_Ch4_final.pdf
  30. T R Barnard (1959). "Winding Ropes and Guide Ropes". Mechanical Engineering. Coal Mining Series (2nd ed.). London: Virtue. pp. 374–375.
  31. 1 2 Madara Ogot; Gul Okudan-Kremer (2004). Engineering design: a practical guide. Trafford Publishing. p. 445. ISBN 1-4120-3850-2.
  32. 1 2 Kaushish (2008). Manufacturing Processes. PHI Learning Pvt. Ltd. p. 378. ISBN 81-203-3352-7.
  33. 1 2 3 4 Kapp GalvRepair. Kapp Alloy & Wire, Inc. Retrieved 23 October 2012.
  34. Soft Solders. www.cupalloys.co.uk (2009-01-20). Retrieved 2010-07-06.
  35. Linotype Alloy Ingot.
  36. A. Street and W. Alexander (1998). Metals in the Service of Man, 11th edition. Penguin Books]. ISBN 978-0-14-025776-2.
  37. 1 2 J. N. Rjabinin & L. W. Shubnikow (13 April 1935). "Magnetic Properties and Critical Currents of Supra-conducting Alloys". Nature 135: 581–582. doi:10.1038/135581a0. https://www.nature.com/articles/135581a0. Retrieved 2017-12-21.
  38. ML Shepard, JF Smith (February 1967). "Single crystalline elastic constants of lead-thallium alloys". Acta Metallurgica 15 (2): 357-363. doi:10.1016/0001-6160(67)90212-X. http://www.sciencedirect.com/science/article/pii/000161606790212X. Retrieved 2017-12-21.
  39. J. Konys, H. Muscher, and Z. Voß O. Wedemeyer (July 2001). "Development of oxygen meters for the use in lead–bismuth". Journal of Nuclear Materials 296 (1–3): 289-294. doi:10.1016/S0022-3115(01)00531-1. http://www.sciencedirect.com/science/article/pii/S0022311501005311. Retrieved 2017-12-21.
  40. R.D. Hutchens and W.E. Wallace (November 1971). "Magnetic properties of rare earth—Lead intermetallics". Journal of Solid State Chemistry 3 (4): 564-566. doi:10.1016/0022-4596(71)90102-2. http://www.sciencedirect.com/science/article/pii/0022459671901022. Retrieved 2017-12-27.
  41. Tatyana V. Svetlitskaya and Peter A. Nevolko (October 2017). "Au-Pb compounds in nature: A general overview and new evidence from the Inagli Pt–Au placer deposit, the Aldan Shield, Russia". Ore Geology Reviews 89: 719-730. doi:10.1016/j.oregeorev.2017.07.007. https://www.sciencedirect.com/science/article/pii/S0169136817302184. Retrieved 2017-12-27.
  42. C. J. Porritt (1975). Chemistry & Industry-London 9: 398.
  43. Thomas A. Hein, Walter Thiel and Timothy J. Lee (1993). "Ab initio study of the stability and vibrational spectra of plumbane, methylplumbane, and homologous compounds". The Journal of Physical Chemistry 97 (17): 4381–4385. doi:10.1021/j100119a021.
  44. http://encyclopedia2.thefreedictionary.com/anhydrous+plumbic+acid
  45. Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr (30 January 2015). "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals". Science 347 (6221): 519-522. doi:10.1126/science.aaa2725. http://science.sciencemag.org/content/347/6221/519. Retrieved 2017-12-27.
  46. Bing Cai, Yedi Xing, Zhou Yang, Wen-Hua Zhang and Jieshan Qiu (March 2013). "High performance hybrid solar cells sensitized by organolead halide perovskites". Energy & Enviromental Science 6 (5): 1480-1485. doi:10.1039/C3EE40343B. http://pubs.rsc.org/-/content/articlelanding/2013/ee/c3ee40343b/unauth#!divAbstract. Retrieved 2018-1-02.
  47. 1 2 Handbook of Mineralogy
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.