Hydrogen deuteride
Skeletal formula of hydrogen deuteride
Names
IUPAC name
Hydrogen deuteride
Systematic IUPAC name
(2H)Dihydrogen
Other names
Hydeuterogen
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.325
EC Number
  • 237-773-0
UN number 1049
  • InChI=1S/H2/h1H/i1+1 checkY
    Key: UFHFLCQGNIYNRP-OUBTZVSYSA-N checkY
  • InChI=1/H2/h1H/i1+1
    Key: UFHFLCQGNIYNRP-OUBTZVSYED
  • [2H][H]
Properties
HD
Molar mass 3.02204 g mol−1
Melting point −259 °C (−434.2 °F; 14.1 K)
Boiling point −253 °C (−423.4 °F; 20.1 K)
Hazards
GHS labelling:
GHS02: FlammableGHS04: Compressed Gas
Danger
H220, H280
P210, P377, P381, P403, P410+P403
NFPA 704 (fire diamond)
NFPA 704 four-colored diamond
0
4
0
571 °C (1,060 °F; 844 K)
Related compounds
Related hydrogens
Deuterium

Hydrogen
Tritium

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

Hydrogen deuteride is an isotopologue of dihydrogen composed of two isotopes of hydrogen: the majority isotope 1H (protium) and 2H (deuterium). Its proper molecular formula is H2H, but for simplification, it is usually written as HD.

Preparation and occurrence

In the laboratory it is produced by treating sodium hydride with deuterated water:[1]

NaH + D2O → HD + NaOD

Hydrogen deuteride is a minor component of naturally occurring molecular hydrogen. It is one of the minor but noticeable components of the atmospheres of all the giant planets, with abundances from about 30 ppm to about 200 ppm. HD has also been found in supernova remnants,[2] and other sources.

Occurrence of HD vs. H2 in giant planets' atmospheres
PlanetHDH2
Jupiter~0.003%89.8% ±2.0%[3]
Uranus~0.015%82.5% ±3.3%[4]
Neptune~0.019%80.0% ±3.2%[5]
H NMR spectrum of a solution of HD (labeled with red bars) and H2 (blue bar). The 1:1:1 triplet arises from the coupling of the 1H nucleus (I = 1/2) to the 2H nucleus ( I = 1).

Radio emission spectra

HD and H2 have very similar emission spectra, but the emission frequencies differ.[6]

The frequency of the astronomically important J = 1-0 rotational transition of HD at 2.7 THz has been measured with tunable FIR radiation with an accuracy of 150 kHz.[7]


References

  1. Bautista, Maria T.; Cappellani, E. Paul; Drouin, Samantha D.; Morris, Robert H.; Schweitzer, Caroline T.; Sella, Andrea; Zubkowski, Jeffery (1991). "Preparation and Spectroscopic Properties of the η2-Dihydrogen Complexes [MH(η2-H2)PR2CH2CH2PR2)2]+ (M = Iron, Ruthenium; R = Ph, Et) and Trends in Properties Down the Iron Group Triad". Journal of the American Chemical Society. 113 (13): 4876–87. doi:10.1021/ja00013a025.
  2. Neufeld, David A.; Hollenbach, David J.; Kaufman, Michael J.; Snell, Ronald L.; Melnick, Gary J.; Bergin, Edwin A.; Sonnentrucker, Paule (2007). "SpitzerSpectral Line Mapping of Supernova Remnants. I. Basic Data and Principal Component Analysis". The Astrophysical Journal. 664 (2): 890–908. arXiv:0704.2179. Bibcode:2007ApJ...664..890N. doi:10.1086/518857. S2CID 15286019.
  3. Williams, David R. (May 22, 2023). "Jupiter Fact Sheet". NASA Space Science Data Coordinated Archive. Retrieved July 31, 2023.
  4. Williams, David R. (May 22, 2023). "Uranus Fact Sheet". NASA Space Science Data Coordinated Archive. Retrieved July 31, 2023.
  5. Williams, David R. (May 22, 2023). "Neptune Fact Sheet". NASA Space Science Data Coordinated Archive. Retrieved July 31, 2023.
  6. Quinn, W.; Baker, J.; Latourrette, J.; Ramsey, N. (1958). "Radio-Frequency Spectra of Hydrogen Deuteride in Strong Magnetic Fields". Phys. Rev. 112 (6): 1929. Bibcode:1958PhRv..112.1929Q. doi:10.1103/PhysRev.112.1929.
  7. Evenson, K. M.; Jennings, D. A.; Brown, J. M.; Zink, L. R.; Leopold, K. R. (1988). "Frequency measurement of the J = 1-0 rotational transition of HD". Astrophysical Journal. 330: L135. Bibcode:1988ApJ...330L.135E. doi:10.1086/185221.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.