Great inverted snub icosidodecahedron
TypeUniform star polyhedron
ElementsF = 92, E = 150
V = 60 (χ = 2)
Faces by sides(20+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol| 5/3 2 3
Symmetry groupI, [5,3]+, 532
Index referencesU69, C73, W116
Dual polyhedronGreat inverted pentagonal hexecontahedron
Vertex figure
34.5/3
Bowers acronymGisid
3D model of a great inverted snub icosidodecahedron

In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol sr{53,3}, and Coxeter-Dynkin diagram . In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.

Cartesian coordinates

Cartesian coordinates for the vertices of a great inverted snub icosidodecahedron are all the even permutations of

with an even number of plus signs, where

where is the golden ratio and ξ is the greater positive real solution to:

Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

The circumradius for unit edge length is

where x is the appropriate root of

The four positive real roots of the sextic in R2,

are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).

Great inverted pentagonal hexecontahedron

Great inverted pentagonal hexecontahedron
TypeStar polyhedron
Face
ElementsF = 60, E = 150
V = 92 (χ = 2)
Symmetry groupI, [5,3]+, 532
Index referencesDU69
dual polyhedronGreat inverted snub icosidodecahedron
3D model of a great inverted pentagonal hexecontahedron

The great inverted pentagonal hexecontahedron (or petaloidal trisicosahedron) is a nonconvex isohedral polyhedron. It is composed of 60 concave pentagonal faces, 150 edges and 92 vertices.

It is the dual of the uniform great inverted snub icosidodecahedron.

Proportions

Denote the golden ratio by . Let be the smallest positive zero of the polynomial . Then each pentagonal face has four equal angles of and one angle of . Each face has three long and two short edges. The ratio between the lengths of the long and the short edges is given by

.

The dihedral angle equals . Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial play a similar role in the description of the great pentagonal hexecontahedron and the great pentagrammic hexecontahedron.

See also

References

  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208 p. 126


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.