< On the Magnet

CHAP. VIII.

In what countries and districts iron
originates.


lenty of iron mines exist everywhere, both those of old time recorded in early ages by the most ancient writers, and the new and modern ones. The earliest and most important seem to me to be those of Asia. For in those countries which abound naturally in iron, governments and the arts flourished exceedingly, and things needful for the use of man were discovered and sought after. It is recorded to have been found about Andria, in the region of the Chalybes near the river Thermodon in Pontus; in the mountains of Palestine which face Arabia; in Carmania: in Africa there was a mine of iron in the Isle of Meroe; in Europe in the hills of Britain, as Strabo writes; in Hither Spain, in Cantabria. Among the Petrocorii and Cubi Biturges[77] (peoples of Gaul), there were worksteads in which iron used to be wrought. In greater Germany near Luna, as recorded by Ptolemy; Gothinian iron is mentioned by Cornelius Tacitus; Noric iron is celebrated in the verses of poets; and Cretan, and that of Eubœa; many other iron mines were passed over by these writers or unknown to them; and yet they were neither poor nor scanty, but most extensive. Pliny[78] says that Hither Spain and all the district from the Pyrenees is ferruginous, and on the part of maritime Cantabria washed by the Ocean (says the same writer) there is (incredible to relate) a precipitously high mountain wholly composed of this material. The most ancient mines were of iron rather than of gold, silver, copper or lead; since mainly this was sought because of the demand; and also because in every district and soil they were easy to find, not so deep-lying, and less beset by difficulties. If, however, I were to enumerate modern iron workings, and those of this age and over Europe only, I should have to write a large and bulky volume, and sheets of paper would run short quicker than the iron, and yet for one sheet they could furnish a thousand worksteads. For amongst minerals, no material is so ample; all metals, and all stones distinct from iron, are outdone by ferric and ferruginous matter. For you will not readily find any region, and scarcely any country district over the whole of Europe (if you search at all deeply), that does not either produce a rich and abundant vein of iron or some soil containing or slightly charged with ferruginous stuff; and that this is true any expert in the arts of metals and chemistry will easily find. Beside that which has ferruginous nature, and the metallick lode, there is another ferric substance which does not yield the metal in this way because its thin humour is burnt out by fierce fires, and it is changed into an iron slag like that which is separated from the metal in the first furnaces. And of this kind is all clay and argillaceous earth, such as that which apparently forms a large part of the whole of our island of Britain: all of which, if subjected very vehemently to intense heat, exhibits a ferric and metallick body, or passes into ferric vitreous matter, as can be easily seen in buildings in bricks baked from clay, which, when placed next the fires in the open kilns (which our folk call clamps)[79] and burned, present an iron vitrification, black at the other end. Moreover all those earths as prepared are drawn by the magnet, and like iron are attracted by it. So perpetual and ample is the iron offspring of the terrestrial globe. Georgius Agricola says that almost all mountainous regions are full of its ores, while as we know a rich iron lode is frequently dug in the open country and plains over nearly the whole of England and Ireland; in no other wise than as, says he, iron is dug out of the meadows at the town of Saga in pits driven to a two-foot depth. Nor are the West Indies without their iron lodes, as writers tell us; but the Spaniards, intent upon gold, neglect the toilsome work of iron-founding, and do not search for lodes and mines abounding in iron. It is probable that nature and the globe of the earth are not able to hide, and are evermore bringing to the light of day, a great mass of inborn matter, and are not invariably obstructed by the settling of mixtures and efflorescences at the earth's surface. It is not only in the common mother (the terrestrial globe) that iron is produced, but sometimes also in the air from the earth's exhalations, in the highest clouds. It rained iron in Lucania, the year in which M. Crassus was slain. The tale is told, too, that a mass of iron, like slag, fell from the air in the Nethorian forest, near Grina, and they narrate that the mass was many pounds in weight; so that it could neither be conveyed to that place, on account of its weight, nor be brought away by cart, the place being without roads. This happened before the civil war waged between the rival dukes in Saxony. A similar story, too, comes to us from Avicenna. It once rained iron in the Torinese[80], in various places (Julius Scaliger telling us that he had a piece of it in his house), about three years before that province was taken over by the king. In the year 1510 in the country bordering on the river Abdua (as Cardan writes[81] in his book De Rerum Varietate) there fell from the sky 1200 stones, one weighing 120 pounds, another 30 or 40 pounds, of a rusty iron colour and remarkably hard. These occurrences being rare are regarded as portents, like the showers of earth and stones mentioned in Roman history. But that it ever rained other metals is not recorded; for it has never been known to rain from the sky gold, silver, lead, tin, or spelter[82]. Copper, however, has been at some time noticed to fall from the sky, and this is not very unlike iron; and in fact cloud-born iron of this sort, or copper, are seen to be imperfectly metallick, incapable of being cast in any way, or wrought with facility. For the earth hath of her store plenty of iron in her highlands, and the globe contains the ferric and magnetick element in rich abundance. The exhalations forcibly derived from such material may well become concreted in the upper air by the help of more powerful causes, and hence some monstrous progeny of iron be begotten.
The page and line references given in these notes are in all cases first to the Latin edition of 1600, and secondly to the English edition of 1900.

77 ^  Page 25, line 15. Page 25, line 16. Petro-coriis, & Cabis Biturgibus.—The Petro-corii were a tribe in the neighbourhood of Perigord; the Cubi Biturges another in that of Bourges.

78 ^  Page 25, line 21. Page 25, line 23. Pliny's account, as translated by P. Holland (ed. 1601, p. 515), runs thus:

"Of all mines that be, the veine of this mettall is largest, and spreadeth it selfe into most lengths every way: as we may see in that part of Biscay that coasteth along the sea, and upon which the Ocean beateth: where there is a craggie mountaine very steep and high, which standeth all upon a mine or veine of yron. A wonderfull thing, and in manner incredible, howbeit, most true, according as I have shewed already in my Cosmographie, as touching the circuit of the Ocean."

79 ^  Page 26, Line 15. Page 26, line 12. quas Clampas nostri vocant.—The name clamp for the natural kiln formed by heaping up the bricks, with ventilating spaces and fuel within the heap, is still current.

80 ^  Page 26, line 39. Page 26, line 38. Pluebat in Taurinis ferrum.—The occurrence is narrated by Scaliger, De Subtilitate, Exercitat. cccxxiii.:

"Sed falsò lapidis pluviam creas tu ex pulvere hausto à nubibus, atque in lapidem condensato. At ferrum, quod pluit in Taurinis, cuius frustum apud nos extat, qua ex fodina sustulit nubes? Tribus circiter annis antè, quàm ab Rege provincia illa recepta esset, pluit ferro multis in locis, sed raris" (p. 434, Editio Lutetiæ, 1557).

"During the latter ages of the Roman Empire the city of Augusta Taurinorum seems to have been commonly known (as was the case in many instances in Transalpine Gaul) by the name of the tribe to which it belonged, and is called simply Taurini in the Itineraries, as well as by other writers, hence its modern name of Torino or Turin" (Smith's Dictionary of Greek and Roman Geographies, p. 1113).

There exists a considerable literature respecting falls of meteors and of meteoric iron. Livy, Plutarch, and Pliny all record examples. See also Remarks concerning stones said to have fallen from the clouds, by Edward King (London, 1796); Chladni, Ueber den Ursprung der von Pallas gefundenen und anderer ihr ähnlicher Eisenmassen (Riga, 1794); Philosophical Transactions, vol. lxxviii., pp. 37 and 183; vol. lxxxv., p. 103; vol. xcii., p. 174; Humboldt's Cosmos, vol. i. (p. 97 of London edition, 1860); C. Rammelsberg, Die chemische Natur der Meteoriten (Berlin, 1879); Maskelyne, Some lecture-notes on Meteorites printed in Nature, vol. xii., pp. 485, 504, and 520, 1875. Maskelyne denominates as siderites those meteorites which consist chiefly of iron. They usually contain from 80 to 95 per cent. of iron, often alloyed with nickel. This meteoric iron is sometimes so pure that it can at once be forged by the smith. An admirable summary of the whole subject is to be found in L. Fletcher's An Introduction to the study of Meteorites, publisht by the British Museum (Nat. Hist.), London, 1896.

81 ^  Page 27, line 3. Page 26, line 41. vt Cardanus ... scribit.—The passage runs:

"Vidimus anno MDX cum cecidisset è cœlo lapides circiter MCC in agrum fluvio Abduæ conterminum, ex his unum CXX pondo, alium sexaginta delati fuerunt ad reges Gallorũ satrapes, plurimi: colos ferrugineus, durities eximia, odor sulphureus" (Cardan, De Rerum Varietate, lib. xiiii., cap. lxxii.; Basil., 1557, p. 545).

82 ^  Page 27, line 9. Page 27, line 2. aut stannum, aut plumbum album. Although most authorities agree in translating plumbum album or plumbum candidum as "tin" (which is unquestionably the meaning in such examples as Pliny's Nat. Hist., xxxiv. 347, and iv. 16; or Strabo, iii. 147), nevertheless it is certain that here plumbum album is not given as a synonym of stannum and therefore is not tin. That Gilbert meant either spelter or pewter is pretty certain. He based his metallic terms mainly upon Encelius (Christoph Entzelt) whose De Re Metallica was published at Frankfurt in 1551. From this work are taken the following passages:

p. 61. De Plumbo candido. Cap. XXXI.

"Veluti plumbum nigrũ uocatur à Germanis blei simpliciter, od' schwartzblei: ita plumbũ candidũ ab his uocatur weissblei, od' ziñ. Impropriè autem plumbum hoc nostrum candidum ziñ, stannum dicitur. Et non sunt idem, ut hactenus voluerunt, stannum et plumbum candidum, unser ziñ. Aliud est stannum, de quo mox agemus: et aliud plumbum candidum nostrum, unser ziñ, quod nigro plumbo quasi est quiddã purius et perfectius...."

p. 62. De Stanno. Cap. XXXII.

"In præcedenti capite indicauimus aliud esse stannum, aliud esse plumbũ candidũ. Illa ergo definitio plumbi candidi, dess zinnes, etiã apud chimistas nõ de stanno, sed de plumbo candido (ut mihi uidetur) intelligenda est, cum dicunt: Stannum (es soll heyssen plumbum candidum) est metallicum album, non purum, lividum...."

p. 63. "Sic uides stannum, secundum Serapionem, metallicum esse quod reperitur in sua propria uena, ut forsitan apud nos bisemutũ: ecõtra nostrũ candidũ plumbũ, est Plinij candidũ plumbũ, das zin, quod cõflatur ut plumbum nigrum, ex pyrite, galena, et lapillis nigris. Deinde uides stannum Plinio esse quiddã de plumbo nigro, nempe primum fluorem plumbi nigri, als wann man vnser bley ertz schmeltzet, das erst das do fleüsset, zwäre Plinio stannum. Et hoc docet Plinius adulterari plũbo candido, mit vnserm zinn, vnd wann du ihm recht nachdenckest, daruon die kannen gemacht werden, das man halbwerck heist.... O ir losen vngelerten, vnckenbrenner. Stannum proculdubio Arabis metallum est preciosius nostro candido plumbo: sicuti apud nos bisemuthum quiddam plumbo preciosius."

This article is issued from Wikisource. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.