Organelle

In cell biology, an organelle is a part of a cell that does a specific job.

A typical animal cell. Within the cytoplasm, the major organelles and cellular structures include: (1) nucleolus (2) nucleus (3) ribosome (4) vesicle (5) rough endoplasmic reticulum (6) Golgi apparatus (7) cytoskeleton (8) smooth endoplasmic reticulum (9) mitochondria (10) vacuole (11) cytosol (12) lysosome (13) centriole.

Organelles usually have a plasma membrane around them.[1] Most of the cell's organelles are in the cytoplasm.[2][3]

The name organelle comes from the idea that these structures are to cells what an organ is to the body.

There are many types of organelles in eukaryotic cells. Prokaryotes were once thought not to have organelles, but some examples have now been found.[4] They are not organized like eukaryote organelles, and are not bounded by plasma membranes. They are called bacterial microcompartments.[5]

Scope of the term

The term is now widely used to refer to cell structures surrounded by single or double plasma membranes.[6][7][8][9] However, the older definition of a 'subcellular functional unit' still exists. So, the term is sometimes used for structures which are not membrane-bound.[10][11]

The plasma membrane is a lipid bilayer with some proteins embedded in it. It keeps the ions and molecules of the organelle from merging with the surroundings.

Origin of organelles

Mitochondria and chloroplasts have double-membranes and their DNA. These are believed to come from incompletely digested or invading prokaryotes, which were adopted as a part of the invaded cell. This idea is supported in the endosymbiotic theory.

Eukaryotic organelles

Major organelles

Major eukaryotic organelles
Organelle Main function Structure Organisms Notes
chloroplast (plastid)photosynthesisdouble-membrane compartmentplants, protistshas some DNA; originally obtained from endosymbiosis.
endoplasmic reticulumtranslation and folding of new proteins (rough endoplasmic reticulum), expression of lipids (smooth endoplasmic reticulum)single-membrane compartmentall eukaryotesrough endoplasmic reticulum has many ribosomes, and folds that are flat sacs; smooth endoplasmic reticulum has folds that are tubular
flagellumlocomotion, sensorysome eukaryotes
Golgi apparatussorting and modification of proteinssingle-membrane compartmentall eukaryotes
mitochondrionenergy productiondouble-membrane compartmentmost eukaryoteshas some DNA; originally obtained by endosymbiosis
nucleusDNA maintenance, RNA transcriptiondouble-membrane compartmentall eukaryoteshas bulk of genome
vacuolestorage, homeostasissingle-membrane compartmenteukaryotes

Minor organelles

Minor eukaryotic organelles and cell components
Organelle/Macromolecule Main function Structure Organisms
acrosomehelps spermatoza fuse with ovumsingle-membrane compartmentmany animals
autophagosomevesicle which collects cytoplasmic material and organelles for degradationdouble-membrane compartmentall eukaryotic cells
centrioleanchor for cytoskeletonmicrotubule proteinanimals
ciliummovement in or of external medium.microtubule proteinanimals, protists, few plants
cnidocyststingingcoiled hollow tubulecnidarians
eyespot apparatusdetects light, allowing phototaxis to take placegreen algae and other unicellular photosynthetic organisms such as Euglena
glycosomecarries out glycolysissingle-membrane compartmentSome protozoa, such as Trypanosomes.
glyoxysomeconversion of fat into sugarssingle-membrane compartmentplants
hydrogenosomeenergy & hydrogen productiondouble-membrane compartmenta few unicellular eukaryotes
lysosomebreakdown of large molecules (e.g., proteins + polysaccharides)single-membrane compartmentby convention, animal cells; but (wider definition) most eukaryotes
melanosomepigment storagesingle-membrane compartmentanimals
mitosomenot knowndouble-membrane compartmenta few unicellular eukaryotes
myofibrilmuscular contractionbundled filamentsanimals
nucleolusribosome productionprotein-DNA-RNAmost eukaryotes
parenthesomenot knownnot knownfungi
peroxisomebreakdown of metabolic hydrogen peroxidesingle-membrane compartmentall eukaryotes
proteasomedegradation of unneeded or damaged proteins by proteolysisvery large protein complexAll eukaryotes, all archaea, some bacteria
ribosometranslation of RNA into proteinsRNA-proteineukaryotes, prokaryotes
stress granulemRNA storagemembraneless (mRNP complexes)Most eukaryotes
vesiclematerial transportsingle-membrane compartmentall eukaryotes

Prokaryotic organelles

Prokaryotes are not so complex as eukaryotes. They were once thought to have no internal structures inside the lipid membranes.[12]

However, recent research has shown that at least some prokaryotes have microcompartments such as carboxysomes. These subcellular compartments are 100–200 nm in diameter and are enclosed by a shell of proteins.[13] Even more striking is the description of membrane-bound magnetosomes in bacteria.[14][15] as well as the nucleus-like structures of the Planctomycetes that are surrounded by lipid membranes.[16]

Prokaryotic organelles and cell components
Organelle/Macromolecule Main function Structure Organisms
carboxysomecarbon fixationprotein-shell compartmentsome bacteria
chlorosomephotosynthesislight harvesting complexgreen sulfur bacteria
flagellummovement in external mediumprotein filamentsome prokaryotes and eukaryotes
magnetosomemagnetic orientationinorganic crystal, lipid membranemagnetotactic bacteria
nucleoidDNA maintenance, transcription to RNADNA-proteinprokaryotes
plasmidDNA exchangecircular DNAsome bacteria
ribosometranslation of RNA into proteinsRNA-proteineukaryotes, prokaryotes
thylakoidphotosynthesisphotosystem proteins and pigmentsmostly cyanobacteria

References

  1. See 'Scope of the term' below.
  2. Alberts, Bruce et al. 2003. Essential cell biology, 2nd ed. Garland Science.
  3. National Research Council (U.S.). Committee on Research Opportunities in Biology (1989). Opportunities in biology. National Academies. p. 104. ISBN 978-0-309-03927-7. Retrieved 23 December 2010.
  4. Kerfeld C.; et al. (2005). "Protein structures forming the shell of primitive bacterial organelles". Science. 309 (5736): 936–8. Bibcode:2005Sci...309..936K. doi:10.1126/science.1113397. PMID 16081736. S2CID 24561197.
  5. Bobik T.A. (2007). "Bacterial microcompartments" (PDF). Microbe. 2. Am Soc Microbiol: 25–31. Archived from the original (PDF) on 2008-08-02. Retrieved 2011-01-06.
  6. Nultsch, Allgemeine Botanik, 11 Aufl. 2001, Thieme Verlag
  7. Wehner/Gehring: Zoologies. 23. Aufl. 1995, Thieme Verlag
  8. Alberts, Bruce (2004). Molecular Biology of the Cell. ISBN 978-0-8153-3218-3.
  9. Brock, Microbiology, 2. korrigierter Nachdruck 2003. der 1. Aufl. von 2001
  10. Strasburger's Lehrbuch der Botanik für Hochschulen, 35. Aufl. 2002. S. 42
  11. Alliegro MC, Alliegro MA, Palazzo RE (2006). "Centrosome-associated RNA in surf clam oocytes". Proc. Nat. Acad. Sci. USA. 103 (24): 9037–9038. Bibcode:2006PNAS..103.9034A. doi:10.1073/pnas.0602859103. PMC 1482561. PMID 16754862.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Ryter A (1988). "Contribution of new cryomethods to a better knowledge of bacterial anatomy". Ann. Inst. Pasteur Microbiol. 139 (1): 33–44. doi:10.1016/0769-2609(88)90095-6. PMID 3289587.
  13. Kerfeld CA; et al. (2005). "Protein structures forming the shell of primitive bacterial organelles". Science. 309 (5736): 936–8. Bibcode:2005Sci...309..936K. doi:10.1126/science.1113397. PMID 16081736. S2CID 24561197.
  14. Komeili A.; et al. (2006). "Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK". Science. 311 (5758): 242–5. Bibcode:2006Sci...311..242K. doi:10.1126/science.1123231. PMID 16373532. S2CID 36909813.
  15. Scheffel A.; et al. (2006). "An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria". Nature. 440 (7080): 110–4. Bibcode:2006Natur.440..110S. doi:10.1038/nature04382. PMID 16299495. S2CID 4372846.
  16. Fuerst JA (2005). "Intracellular compartmentation in planctomycetes". Annu. Rev. Microbiol. 59: 299–328. doi:10.1146/annurev.micro.59.030804.121258. PMID 15910279.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.