9000 (number)

9000 (nine thousand) is the natural number after 8999 and before 9001.

8999 9000 9001
0 1k 2k 3k 4k 5k 6k 7k 8k 9k
Cardinalnine thousand
Ordinal9000th
(nine thousandth)
Factorization23× 32× 53
Greek numeral,Θ´
Roman numeralMX, or IX
Unicode symbol(s)MX, mx, IX, ix
Binary100011001010002
Ternary1101001003
Quaternary20302204
Quinary2420005
Senary1054006
Octal214508
Duodecimal526012
Hexadecimal232816
Vigesimal12A020
Base 366Y036
ArmenianՔ

Selected numbers: 9001–9999

9001 to 9099

  • 9001sexy prime with 9007
  • 9007 – sexy prime with 9001
  • 9009centered cube number[1]
  • 9025 = 952, centered octagonal number
  • 9029Sophie Germain prime
  • 9041super-prime
  • 9045triangular number
  • 9059 – Sophie Germain prime
  • 9072decagonal number
  • 9077Markov number[2]
  • 9091unique prime[3]

9100 to 9199

  • 9103super-prime
  • 9126pentagonal pyramidal number[4]
  • 9139tetrahedral number[5]
  • 9175 – smallest (provable) generalized Sierpiński number in base 10: 9175*10n+1 is always divisible by one of the prime numbers {7, 11, 13, 73}.[6]
  • 9180 – triangular number

9200 to 9299

  • 9216 = 962
  • 9221 – Sophie Germain prime
  • 9224octahedral number[7]
  • 9241cuban prime of the form x = y + 1[8]
  • 9261 = 213, largest 4 digit perfect cube
  • 9272weird number[9]
  • 9283centered heptagonal number
  • 9293 – Sophie Germain prime, super-prime

9300 to 9399

  • 9316 – triangular number
  • 9319super-prime
  • 9334nonagonal number
  • 9349Lucas prime,[10] Fibonacci number
  • 9371 – Sophie Germain prime
  • 9376 – 1-automorphic number
  • 9397balanced prime

9400 to 9499

  • 9403super-prime
  • 9409 = 972, centered octagonal number
  • 9419 – Sophie Germain prime
  • 9439 – completes the twelfth prime quadruplet set
  • 9453 – triangular number
  • 9455square pyramidal number[11]
  • 9457 – decagonal number
  • 9461super-prime, twin prime
  • 9467safe prime
  • 9473 – Sophie Germain prime, balanced prime, Proth prime
  • 9474Narcissistic number in base 10
  • 9479 – Sophie Germain prime
  • 9496Telephone/involution number

9500 to 9599

  • 9511 - prime number
  • 9521 - prime number
  • 9533 - prime number
  • 9539 – Sophie Germain prime, super-prime
  • 9551 – first prime followed by as many as 35 consecutive composite numbers
  • 9587 – safe prime, follows 35 consecutive composite numbers
  • 9591 – triangular number
  • 9592 - amount of prime numbers under 100,000


9600 to 9699

  • 9601Proth prime
  • 9604 = 982
  • 9619super-prime
  • 9629 – Sophie Germain prime
  • 9647 – centered heptagonal number
  • 9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
  • 9689 – Sophie Germain prime
  • 9699 – nonagonal number

9700 to 9799

  • 9721 – prime of the form 2p-1
  • 9730 – triangular number
  • 9739super-prime
  • 9743 – safe prime
  • 9791 – Sophie Germain prime

9800 to 9899

  • 9800 – member of a Ruth-Aaron pair (first definition) with 9801
  • 9801 = 992, the largest 4 digit perfect square, centered octagonal number, square pentagonal number, member of a Ruth-Aaron pair (first definition) with 9800
  • 9833super-prime
  • 9839 – safe prime
  • 9850 – decagonal number
  • 9855magic constant of n × n normal magic square and n-Queens Problem for n = 27.
  • 9857Proth prime
  • 9859 – super-prime
  • 9870 – triangular number
  • 9871 – balanced prime
  • 9880 – tetrahedral number[12]
  • 9887 – safe prime

9900 to 9999

  • 9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[13]
  • 9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[14]
  • 9923super-prime, probably smallest certainly executable prime number on x86 MS-DOS[15]
  • 9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
  • 9973 – super-prime
  • 9999Kaprekar number, repdigit

Prime numbers

There are 112 prime numbers between 9000 and 10000:[16][17]

9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973

References

  1. Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers: n^3 + (n+1)^3.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "Sequence A002559". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime) of the form A019328(r)/gcd(A019328(r),r) in order (periods r are given in A051627).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "Sequence A002411". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "Sequence A000292". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. Brunner, Amy; Caldwell, Chris K.; Krywaruczenko, Daniel & Lownsdale, Chris (2009). "GENERALIZED SIERPIŃSKI NUMBERS TO BASE b" (PDF). 数理解析研究所講究録 [Notes from the Institute of Mathematical Analysis (in, New Aspects of Analytic Number Theory)]. 1639. Kyoto: RIMS: 69–79. hdl:2433/140555. S2CID 38654417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Sloane, N. J. A. (ed.). "Sequence A005900". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. Sloane, N. J. A. (ed.). "Sequence A006037 (Weird numbers: abundant (A005101) but not pseudoperfect (A005835).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers (cf. A000032).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. Sloane, N. J. A. (ed.). "Sequence A000330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  13. "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  14. Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  15. An Executable Prime Number?, archived from the original on 2010-02-10
  16. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.