The Turán–Kubilius inequality is a mathematical theorem in probabilistic number theory. It is useful for proving results about the normal order of an arithmetic function.[1]: 305–308 The theorem was proved in a special case in 1934 by Pál Turán and generalized in 1956 and 1964 by Jonas Kubilius.[1]: 316
Statement of the theorem
This formulation is from Tenenbaum.[1]: 302 Other formulations are in Narkiewicz[2]: 243 and in Cojocaru & Murty.[3]: 45–46
Suppose f is an additive complex-valued arithmetic function, and write p for an arbitrary prime and ν for an arbitrary positive integer. Write
and
Then there is a function ε(x) that goes to zero when x goes to infinity, and such that for x ≥ 2 we have
Applications of the theorem
Turán developed the inequality to create a simpler proof of the Hardy–Ramanujan theorem about the normal order of the number ω(n) of distinct prime divisors of an integer n.[1]: 316 There is an exposition of Turán's proof in Hardy & Wright, §22.11.[4] Tenenbaum[1]: 305–308 gives a proof of the Hardy–Ramanujan theorem using the Turán–Kubilius inequality and states without proof several other applications.
Notes
- 1 2 3 4 5 Tenenbaum, Gérald (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge studies in advanced mathematics. Vol. 46. Cambridge University Press. ISBN 0-521-41261-7.
- ↑ Narkiewicz, Władysław (1983). Number Theory. Singapore: World Scientific. ISBN 978-9971-950-13-2.
- ↑ Cojocaru, Alina Carmen; Murty, M. Ram (2005). An Introduction to Sieve Methods and Their Applications. London Mathematical Society Student Texts. Vol. 66. Cambridge University Press. ISBN 0-521-61275-6.
- ↑ Hardy, G. H.; Wright, E. M. (2008) [First edition 1938]. An Introduction to the Theory of Numbers. Revised by D. R. Heath-Brown and Joseph H. Silverman (Sixth ed.). Oxford, Oxfordshire: Oxford University Press. ISBN 978-0-19-921986-5.