When realizing pipeline forwarding[1] a predefined schedule for forwarding a pre-allocated amount of bytes during one or more time frames along a path of subsequent switches establishes a synchronous virtual pipe (SVP). The SVP capacity is determined by the total number of bits allocated in every time cycle for the SVP. For example, for a 10 ms time cycle, if 20,000 bits are allocated during each of 2 time frames, the SVP capacity is 4 Mbit/s.

Pipeline forwarding guarantees that reserved traffic, i.e., traveling on an SVP, experiences:

  1. bounded end-to-end delay,
  2. delay jitter lower than two TFs, and
  3. no congestion and resulting losses.

Two implementations of the pipeline forwarding were proposed: time-driven switching (TDS) [2] and time-driven priority (TDP) [3] and can be used to create pipeline forwarding parallel network in the future Internet.[4]

References

  1. Baldi, M.; Marchetto, G.; Ofek, Y. (2007), "A Scalable Solution for Engineering Streaming Traffic in the Future Internet", Computer Networks (COMNET), 51 (14): 4092–4111, CiteSeerX 10.1.1.559.3251, doi:10.1016/j.comnet.2007.04.019
  2. Baldi, M.; Ofek, Y. (2004), "Fractional Lambda Switching - Principles of Operation and Performance Issues" (PDF), SIMULATION: Transactions of the Society for Modeling and Simulation International, 80 (10): 527–544, CiteSeerX 10.1.1.131.6794, doi:10.1177/0037549704046461, S2CID 2276883
  3. Li, C.-S.; Ofek, Y.; Yung, M. (1996), "Time-driven priority flow control for real-time heterogeneous internetworking", IEEE Int. Conf. on Computer Communications (INFOCOM 1996) (PDF), IEEE
  4. Baldi, M.; Ofek, Y. (2009), "Time for a 'Greener' Internet", 1st International Workshop on Green Communications (GreenComm'09) in conjunction with the IEEE International Conference on Communications (IEEE ICC 2009) (PDF), IEEE
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.