Solar eclipse of May 31, 2049
Map
Type of eclipse
NatureAnnular
Gamma−0.1187
Magnitude0.9631
Maximum eclipse
Duration285 sec (4 m 45 s)
Coordinates15°18′N 29°54′W / 15.3°N 29.9°W / 15.3; -29.9
Max. width of band134 km (83 mi)
Times (UTC)
Greatest eclipse13:59:59
References
Saros138 (33 of 70)
Catalog # (SE5000)9617

An annular solar eclipse will occur on Monday, May 31, 2049. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Images


Animated path

Solar eclipses 2047–2050

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial lunar eclipses on January 26, 2047 and July 22, 2047 occur on the previous lunar year eclipse set.

Solar eclipse sets from 2047–2050
Descending node   Ascending node
118June 23, 2047

Partial
123December 16, 2047

Partial
128June 11, 2048

Annular
133December 5, 2048

Total
138May 31, 2049

Annular
143November 25, 2049

Hybrid
148May 20, 2050

Hybrid
153November 14, 2050

Partial

Saros 138

It is a part of Saros cycle 138, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on June 6, 1472. It contains annular eclipses from August 31, 1598 through February 18, 2482 with a hybrid eclipse on March 1, 2500. It has total eclipses from March 12, 2518 through April 3, 2554. The series ends at member 70 as a partial eclipse on July 11, 2716. The longest duration of totality will be only 56 seconds on April 3, 2554.


Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings. In the 18th century:

  • Solar Saros 127: Total Solar Eclipse of 1731 Jan 08
  • Solar Saros 128: Annular Solar Eclipse of 1759 Dec 19
  • Solar Saros 129: Annular Solar Eclipse of 1788 Nov 27
Inex series members between 1801 and 2200:
Near lunar perigee After lunar apogee
Before lunar perigee
Before lunar apogee
After lunar perigee

November 9, 1817
(Saros 130)

October 20, 1846
(Saros 131)

September 29, 1875
(Saros 132)

September 9, 1904
(Saros 133)

August 21, 1933
(Saros 134)

July 31, 1962
(Saros 135)

July 11, 1991
(Saros 136)

June 21, 2020
(Saros 137)

May 31, 2049
(Saros 138)

May 11, 2078
(Saros 139)

April 23, 2107
(Saros 140)

April 1, 2136
(Saros 141)

March 12, 2165
(Saros 142)

February 21, 2194
(Saros 143)

In the 23rd century:

  • Solar Saros 144: Annular Solar Eclipse of 2223 Feb 01
  • Solar Saros 145: Total Solar Eclipse of 2252 Jan 12
  • Solar Saros 146: Annular Solar Eclipse of 2280 Dec 22

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between June 1, 2011 and June 1, 2087
May 31 – June 1 March 19–20 January 5–6 October 24–25 August 12–13
118 120 122 124 126

June 1, 2011

March 20, 2015

January 6, 2019

October 25, 2022

August 12, 2026
128 130 132 134 136

June 1, 2030

March 20, 2034

January 5, 2038

October 25, 2041

August 12, 2045
138 140 142 144 146

May 31, 2049

March 20, 2053

January 5, 2057

October 24, 2060

August 12, 2064
148 150 152 154 156

May 31, 2068

March 19, 2072

January 6, 2076

October 24, 2079

August 13, 2083
158 160 162 164 166

June 1, 2087

October 24, 2098

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.