Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds.[1] Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms PsPs or Ps–X (where Ps is a pseudohalogen group), such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.

Common pseudohalogens and their nomenclature

Many pseudohalogens are known by specialized common names according to where they occur in a compound. Well-known ones include (the true halogen chlorine is listed for comparison):

Group Dimer Hydrogen compound Pseudohalide Ligand name In organic compounds Formula Structural formula
True halogens
chlorochlorine
(dichlorane)
Hydrogen chloride
(chlorane)
chloridechlorido-
chloro-
-yl chloride~ Cl−Cl
Pseudohalogens
cyanocyanogenhydrogen cyanide,
prussic acid,
formonitrile
cyanidecyanido-
cyano-
-nitrile
-yl cyanide
~ CN−C≡N
cyaphocyaphogenphosphaethynecyaphidecyaphido-
cyapho-
-yl cyaphide~ CP−C≡P
isocyanoisocyanogenhydrogen isocyanide,
isohydrocyanic acid
isocyanideisocyanido-
isocyano-
-isonitrile
-yl isocyanide
~ NC−N+≡C
hydroxylhydrogen peroxide
(dioxidane)
water
(oxidane)
hydroxidehydroxido-
hydroxy-
-ol~ OH−O−H
sulfanylhydrogen disulfide
(disulfane)
hydrogen sulfide
(sulfane)
hydrosulfidesulfanido-
thiolato-
-thiol
-yl mercaptane
~ SH−S−H
selanylhydrogen diselenide
(diselane)
hydrogen selenide
(selane)
hydroselenideselanido-
selenolato-
-selenol~ SeH−Se−H
tellanylhydrogen ditelluride
(ditellane)
hydrogen telluride
(tellane)
hydrotelluridetellanido-
tellurolato-
-tellurol~ TeH−Te−H
cyanatedicyanodioxidanecyanic acidcyanatecyanato--yl cyanate~ OCN−O−C≡N
isocyanateisocyanogenisocyanic acidisocyanateisocyanato--yl isocyanate~ NCO−N=C=O
fulminatefulminogenfulminic acidfulminatefulminato--nitrile oxide
-yl fulminate
~ CNO−C≡N+−O
thiocyanate,
rhodanide
thiocyanogenthiocyanic acidthiocyanatethiocyanato--yl thiocyanate~ SCN−S−C≡N
isothiocyanateisothiocyanogenisothiocyanic acidisothiocyanateisothiocyanato--yl isothiocyanate~ NCS−N=C=S
selenocyanate,
selenorhodanide
selenocyanogenselenocyanic acidselenocyanateselenocyanato--yl selenocyanate~ SeCN−Se−C≡N
tellurocyanate,[2]
tellurorhodanide
tellurocyanogentellurocyanic acidtellurocyanatetellurocyanato--yl tellurocyanate~ TeCN−Te−C≡N
azideazidogenhydrazoic acidazideazido--yl azide~ N3−N−N+≡N

−N=N+=N
nitric oxidedinitrogen dioxidenitroxylnitroxidenitrosylnitroso-~ NO−N=O
nitrogen dioxidedinitrogen tetroxidenitrylnitro-~ NO2−NO2
cobalt carbonyldicobalt octacarbonylcobalt tetracarbonyl hydridetetracarbonylcobaltate~ Co(CO)4−Co(C≡O)4
trinitromethanidehexanitroethanenitroform,
trinitromethane
trinitromethanidetrinitromethanido--yl trinitromethanide~ C(NO2)3−C(−NO2)3
tricyanomethanidehexacyanoethanecyanoform,
tricyanomethane
tricyanomethanidetricyanomethanido--yl tricyanomethanide~ C(CN)3−C(−C≡N)3
1,2,3,4-thiatriazol-5-thiolatebis(1,2,3,4-thiatriazol-5-yl)disulfane1,2,3,4-thiatriazol-5-thiol[3]1,2,3,4-thiatriazol-5-thiolate1,2,3,4-thiatriazol-5-thiolato--yl 1,2,3,4-thiatriazol-5-thiolate~ CS2N3[4]
auride Au2

(Gold dimer)

HAu

(Gold(I) hydride)

auride aurido- ~ Au −Au

Au is considered to be a pseudohalogen ion due to its disproportionation reaction with alkali and the ability to form covalent bonds with hydrogen.[5]

Examples of pseudohalogen molecules

Examples of symmetrical pseudohalogen compounds (Ps−Ps, where Ps is a pseudohalogen) include cyanogen (CN)2, thiocyanogen (SCN)2 and hydrogen peroxide H2O2. Another complex symmetrical pseudohalogen compound is dicobalt octacarbonyl, Co2(CO)8. This substance can be considered as a dimer of the hypothetical cobalt tetracarbonyl, Co(CO)4.

Examples of non-symmetrical pseudohalogen compounds (pseudohalogen halides Ps−X, where Ps is a pseudohalogen and X is a halogen, or interpseudohalogens Ps1−Ps2, where Ps1 and Ps2 are two different pseudohalogens), analogous to the binary interhalogen compounds, are cyanogen halides like cyanogen chloride (Cl−CN), cyanogen bromide (Br−CN), nitryl fluoride (F−NO2), nitrosyl chloride (Cl−NO) and chlorine azide (Cl−N3), as well as interpseudohalogens like dinitrogen trioxide (O=N−NO2), nitric acid (HO−NO2) and cyanogen azide (N3−CN).

Not all combinations of interpseudohalogens and pseudohalogen halides are known to be stable (e.g. sulfanol HS−OH).

Pseudohalides

Pseudohalides form univalent anions which form binary acids with hydrogen and form insoluble salts with silver such as silver cyanide (AgCN), silver cyanate (AgOCN), silver fulminate (AgCNO), silver thiocyanate (AgSCN) and silver azide (AgN3).

A common complex pseudohalide is a tetracarbonylcobaltate [Co(CO)4]. The acid cobalt tetracarbonyl hydride HCo(CO)4 is in fact quite a strong acid, though its low solubility renders it not as strong as the true hydrogen halide.

The behavior and chemical properties of the above pseudohalides are identical to that of the true halide ions. The presence of the internal multiple bonds does not appear to affect their chemical behavior. For example, they can form strong acids of the type HX (compare hydrogen chloride HCl to hydrogen tetracarbonylcobaltate HCo(CO)4), and they can react with metals M to form compounds like MX (compare sodium chloride NaCl to sodium azide NaN3).

Nanoclusters of aluminium (often referred to as superatoms) are sometimes considered to be pseudohalides since they, too, behave chemically as halide ions, forming [[Superatom#Aluminum clusters|Al13]]I2 (analogous to triiodide I3) and similar compounds. This is due to the effects of metallic bonding on small scales.

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) "pseudohalogens". doi:10.1351/goldbook.P04930
  2. "Tellurocyanate | CNTe | ChemSpider". Archived from the original on 2021-11-21.
  3. https://pubchem.ncbi.nlm.nih.gov/compound/12821433
  4. Margaret-Jane Crawford, et al. CS2N3, A Novel Pseudohalogen. J. Am. Chem. Soc. 2000, 122, 9052-9053
  5. Mudring, Anjy-Verena; Jansen, Martin (2000-11-28). "ChemInform Abstract: Base-Induced Disproportionation of Elemental Gold". ChemInform. 31 (48): no. doi:10.1002/chin.200048020.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.