In mathematics, a Poisson–Lie group is a Poisson manifold that is also a Lie group, with the group multiplication being compatible with the Poisson algebra structure on the manifold.
The infinitesimal counterpart of a Poisson–Lie group is a Lie bialgebra, in analogy to Lie algebras as the infinitesimal counterparts of Lie groups.
Many quantum groups are quantizations of the Poisson algebra of functions on a Poisson–Lie group.
Definition
A Poisson–Lie group is a Lie group equipped with a Poisson bracket for which the group multiplication with is a Poisson map, where the manifold has been given the structure of a product Poisson manifold.
Explicitly, the following identity must hold for a Poisson–Lie group:
where and are real-valued, smooth functions on the Lie group, while and are elements of the Lie group. Here, denotes left-multiplication and denotes right-multiplication.
If denotes the corresponding Poisson bivector on , the condition above can be equivalently stated as
In particular, taking one obtains , or equivalently . Applying Weinstein splitting theorem to one sees that non-trivial Poisson-Lie structure is never symplectic, not even of constant rank.
Poisson-Lie groups - Lie bialgebra correspondence
The Lie algebra of a Poisson–Lie group has a natural structure of Lie coalgebra given by linearising the Poisson tensor at the identity, i.e. is a comultiplication. Moreover, the algebra and the coalgebra structure are compatible, i.e. is a Lie bialgebra,
The classical Lie group–Lie algebra correspondence, which gives an equivalence of categories between simply connected Lie groups and finite-dimensional Lie algebras, was extended by Drinfeld to an equivalence of categories between simply connected Poisson–Lie groups and finite-dimensional Lie bialgebras.
Thanks to Drinfeld theorem, any Poisson–Lie group has a dual Poisson–Lie group, defined as the Poisson–Lie group integrating the dual of its bialgebra.[1][2][3]
Homomorphisms
A Poisson–Lie group homomorphism is defined to be both a Lie group homomorphism and a Poisson map. Although this is the "obvious" definition, neither left translations nor right translations are Poisson maps. Also, the inversion map taking is not a Poisson map either, although it is an anti-Poisson map:
for any two smooth functions on .
Examples
Trivial examples
- Any trivial Poisson structure on a Lie group defines a Poisson–Lie group structure, whose bialgebra is simply with the trivial comultiplication.
- The dual of a Lie algebra, together with its linear Poisson structure, is an additive Poisson–Lie group.
These two example are dual of each other via Drinfeld theorem, in the sense explained above.
Other examples
Let be any semisimple Lie group. Choose a maximal torus and a choice of positive roots. Let be the corresponding opposite Borel subgroups, so that and there is a natural projection . Then define a Lie group
which is a subgroup of the product , and has the same dimension as .
The standard Poisson–Lie group structure on is determined by identifying the Lie algebra of with the dual of the Lie algebra of , as in the standard Lie bialgebra example. This defines a Poisson–Lie group structure on both and on the dual Poisson Lie group . This is the "standard" example: the Drinfeld-Jimbo quantum group is a quantization of the Poisson algebra of functions on the group . Note that is solvable, whereas is semisimple.
See also
References
- ↑ Lu, Jiang-Hua; Weinstein, Alan (1990-01-01). "Poisson Lie groups, dressing transformations, and Bruhat decompositions". Journal of Differential Geometry. 31 (2). doi:10.4310/jdg/1214444324. ISSN 0022-040X. S2CID 117053536.
- ↑ Kosmann-Schwarzbach, Y. (1996-12-01). "Poisson-Lie groups and beyond". Journal of Mathematical Sciences. 82 (6): 3807–3813. doi:10.1007/BF02362640. ISSN 1573-8795. S2CID 123117926.
- ↑ Kosmann-Schwarzbach, Y. (1997). "Lie bialgebras, poisson Lie groups and dressing transformations". In Y. Kosmann-Schwarzbach; B. Grammaticos; K. M. Tamizhmani (eds.). Integrability of Nonlinear Systems. Proceedings of the International Center for Pure and Applied Mathematics at Pondicherry University, 8–26 January 1996. Lecture Notes in Physics. Vol. 495. Berlin, Heidelberg: Springer. pp. 104–170. doi:10.1007/BFb0113695. ISBN 978-3-540-69521-9.
- Doebner, H.-D.; Hennig, J.-D., eds. (1989). Quantum groups. Proceedings of the 8th International Workshop on Mathematical Physics, Arnold Sommerfeld Institute, Claausthal, FRG. Berlin: Springer-Verlag. ISBN 3-540-53503-9.
- Chari, Vyjayanthi; Pressley, Andrew (1994). A Guide to Quantum Groups. Cambridge: Cambridge University Press Ltd. ISBN 0-521-55884-0.