In mathematics, a Picard modular surface, studied by Picard (1881), is a complex surface constructed as a quotient of the unit ball in C2 by a Picard modular group. Picard modular surfaces are some of the simplest examples of Shimura varieties and are sometimes used as a test case for the general theory of Shimura varieties.
See also
References
- Langlands, Robert P.; Ramakrishnan, Dinakar, eds. (1992), The zeta functions of Picard modular surfaces, Montreal, QC: Univ. Montréal, ISBN 978-2-921120-08-1, MR 1155233
- Picard, Émile (1881), "Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques", Annales Scientifiques de l'École Normale Supérieure, Série 2, 10: 305–322
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.