Kumiko Nishioka (西岡 久美子, Nishioka Kumiko, born 1954) is a Japanese mathematician at Keio University. She specializes in transcendental numbers, and is known for her research related to the theory of Mahler functions[1][2][3] and Painlevé transcendents.[4] In 1996 she published the first comprehensive text on transcendence of Mahler functions, Mahler Functions and Transcendence, extending and generalizing Mahler's method.[5] Her husband Keiji Nishioka is also a mathematician, and a coauthor.

References

  1. "Mahler method - Encyclopedia of Mathematics". Retrieved 8 July 2018.
  2. Fernandes, Gwladys (2018). "Méthode de Mahler en caractéristique non nulle: un analogue du théorème de Ku. Nishioka". Annales de l'Institut Fourier. 68 (6): 2553–2580. arXiv:1707.08033. doi:10.5802/aif.3216. MR 3897974.
  3. Komatsu, Takao (1998). "On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm". Acta Arithmetica. 86 (4): 305–324. doi:10.4064/aa-86-4-305-324. MR 1659089.
  4. Casale, Guy (2009). "Une preuve galoisienne de l'irréductibilité au sens de Nishioka-Umemura de la première équation de Painlevé". Astérisque (323): 83–100. ISBN 978-2-85629-263-1. MR 2647966.
  5. van der Poorten, Alf (1998). "Review of Mahler Functions and Transcendence by Kumiko Nishioka". Bull. London Math. Soc. 30 (6).


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.