Hexicated 8-simplex | |
---|---|
![]() Orthogonal projection on A8 Coxeter plane | |
Type | uniform 8-polytope |
Schläfli symbol | t0,6{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2268 |
Vertices | 252 |
Vertex figure | |
Coxeter groups | A8, [37], order 362880 |
Properties | convex |
In eight-dimensional geometry, a hexicated 8-simplex is a uniform 8-polytope, being a hexication (6th order truncation) of the regular 8-simplex.
Coordinates
The Cartesian coordinates of the vertices of the hexicated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,1,1,2). This construction is based on facets of the hexicated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() |
![]() |
![]() |
![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() |
![]() |
![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
A8 polytopes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() t0 |
![]() t1 |
![]() t2 |
![]() t3 |
![]() t01 |
![]() t02 |
![]() t12 |
![]() t03 |
![]() t13 |
![]() t23 |
![]() t04 |
![]() t14 |
![]() t24 |
![]() t34 |
![]() t05 |
![]() t15 |
![]() t25 |
![]() t06 |
![]() t16 |
![]() t07 |
![]() t012 |
![]() t013 |
![]() t023 |
![]() t123 |
![]() t014 |
![]() t024 |
![]() t124 |
![]() t034 |
![]() t134 |
![]() t234 |
![]() t015 |
![]() t025 |
![]() t125 |
![]() t035 |
![]() t135 |
![]() t235 |
![]() t045 |
![]() t145 |
![]() t016 |
![]() t026 |
![]() t126 |
![]() t036 |
![]() t136 |
![]() t046 |
![]() t056 |
![]() t017 |
![]() t027 |
![]() t037 |
![]() t0123 |
![]() t0124 |
![]() t0134 |
![]() t0234 |
![]() t1234 |
![]() t0125 |
![]() t0135 |
![]() t0235 |
![]() t1235 |
![]() t0145 |
![]() t0245 |
![]() t1245 |
![]() t0345 |
![]() t1345 |
![]() t2345 |
![]() t0126 |
![]() t0136 |
![]() t0236 |
![]() t1236 |
![]() t0146 |
![]() t0246 |
![]() t1246 |
![]() t0346 |
![]() t1346 |
![]() t0156 |
![]() t0256 |
![]() t1256 |
![]() t0356 |
![]() t0456 |
![]() t0127 |
![]() t0137 |
![]() t0237 |
![]() t0147 |
![]() t0247 |
![]() t0347 |
![]() t0157 |
![]() t0257 |
![]() t0167 |
![]() t01234 |
![]() t01235 |
![]() t01245 |
![]() t01345 |
![]() t02345 |
![]() t12345 |
![]() t01236 |
![]() t01246 |
![]() t01346 |
![]() t02346 |
![]() t12346 |
![]() t01256 |
![]() t01356 |
![]() t02356 |
![]() t12356 |
![]() t01456 |
![]() t02456 |
![]() t03456 |
![]() t01237 |
![]() t01247 |
![]() t01347 |
![]() t02347 |
![]() t01257 |
![]() t01357 |
![]() t02357 |
![]() t01457 |
![]() t01267 |
![]() t01367 |
![]() t012345 |
![]() t012346 |
![]() t012356 |
![]() t012456 |
![]() t013456 |
![]() t023456 |
![]() t123456 |
![]() t012347 |
![]() t012357 |
![]() t012457 |
![]() t013457 |
![]() t023457 |
![]() t012367 |
![]() t012467 |
![]() t013467 |
![]() t012567 |
![]() t0123456 |
![]() t0123457 |
![]() t0123467 |
![]() t0123567 |
![]() t01234567 |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, PhD
- Klitzing, Richard. "8D uniform polytopes (polyzetta) x3o3o3o3o3o3x3o".
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.