This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.

Elements

Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy.[1] Either convention can be used.[2]

Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, and invariably autodetach after some time.

ZElementNameElectron affinity (eV)Electron affinity (kJ/mol)References
1 1H Hydrogen0.754 195(19)72.769(2)[3]
1 2H Deuterium0.754 67(4)72.814(4)[4]
2HeHelium−0.5(2)−48(20)estimated (est.)[5]
3LiLithium0.618 049(22)59.632 6(21)[6]
4BeBeryllium−0.5(2)−48(20)est.[5]
5BBoron0.279 723(25)26.989(3)[7]
6 12C Carbon1.262 122 6(11)121.776 3(1)[8]
6 13C Carbon1.262 113 6(12)121.775 5(2)[8]
7NNitrogen−0.07−6.8[5]
8 16O Oxygen1.461 112 97(9)140.975 970(9)[9]
8 17O Oxygen1.461 108(4)140.975 5(3)[10]
8 18O Oxygen1.461 105(3)140.975 2(3)[10]
9FFluorine3.401 189 8(24)328.164 9(3)[11][12]
10NeNeon−1.2(2)−116(19)est.[5]
11NaSodium0.547 926(25)52.867(3)[13]
12MgMagnesium−0.4(2)−40(19)est.[5]
13AlAluminium0.432 83(5)41.762(5)[14]
14SiSilicon1.389 521 2(8)134.068 4(1)[15]
15PPhosphorus0.746 609(11)72.037(1)[16]
16 32S Sulfur2.077 104 2(6)200.410 1(1)[15]
16 34S Sulfur2.077 104 5(12)200.410 1(2)[17]
17ClChlorine3.612 725(28)348.575(3)[18]
18ArArgon−1.0(2)−96(20)est.[5]
19KPotassium0.501 459(13)48.383(2)[19]
20CaCalcium0.024 55(10)2.37(1)[20]
21ScScandium0.179 380(23)17.307 6(22)[21]
22TiTitanium0.075 54(5)7.289(5)[22]
23VVanadium0.527 66(20)50.911(20)[23]
24CrChromium0.675 928(27)65.217 2(26)[21]
25MnManganese−0.5(2)−50(19)est.[5]
26FeIron0.153 236(35)14.785(4)[24]
27CoCobalt0.662 255(47)63.897 9(45)[25]
28NiNickel1.157 16(12)111.65(2)[26]
29CuCopper1.235 78(4)119.235(4)[27]
30ZnZinc−0.6(2)−58(20)est.[5]
31GaGallium0.301 166(15)29.058 1(15)[28]
32GeGermanium1.232 676 4(13)118.935 2(2)[29]
33AsArsenic0.804 8(2)77.65(2)[30]
34SeSelenium2.020 604 7(12)194.958 7(2)[31]
35BrBromine3.363 588(3)324.536 9(3)[11]
36KrKrypton−1.0(2)−96(20)est.[5]
37RbRubidium0.485 916(21)46.884(3)[32]
38SrStrontium0.052 06(6)5.023(6)[33]
39YYttrium0.311 29(22)30.035(21)[21]
40ZrZirconium0.433 28(9)41.806(9)[34]
41NbNiobium0.917 40(7)88.516(7)[35]
42MoMolybdenum0.747 23(8)72.097(8)[21]
43TcTechnetium0.55(20)53(20)est.[36]
44RuRuthenium1.046 27(2)100.950(3)[21]
45RhRhodium1.142 89(20)110.27(2)[26]
46PdPalladium0.562 14(12)54.24(2)[26]
47AgSilver1.304 47(3)125.862(3)[27]
48CdCadmium−0.7(2)−68(20)est.[5]
49InIndium0.383 92(6)37.043(6)[37]
50SnTin1.112 070(2)107.298 4(3)[38]
51SbAntimony1.047 401(19)101.059(2)[39]
52TeTellurium1.970 875(7)190.161(1)[40]
53127IIodine3.059 046 5(37)295.153 1(4)[41]
53128IIodine3.059 052(38)295.154(4)[42]
54XeXenon−0.8(2)−77(20)est.[5]
55CsCaesium0.471 630(25)45.505(3)[13][43]
56BaBarium0.144 62(6)13.954(6)[44]
57LaLanthanum0.557 546(20)53.795(2)[45]
58CeCerium0.600 160(27)57.906 7(26)[46]
59PrPraseodymium0.109 23(46)10.539(45)[47]
60NdNeodymium0.097 49(33)9.406(32)[47]
61PmPromethium0.12912.45[48]
62SmSamarium0.16215.63[48]
63EuEuropium0.116(13)11.2(13)[49]
64GdGadolinium0.212(30)20.5(29)[21]
65TbTerbium0.131 31(80)12.670(77)[47]
66DyDysprosium0.015(3)1.45(30)[50]
67HoHolmium0.33832.61[48]
68ErErbium0.31230.10[48]
69TmThulium1.029(22)99(3)[51]
70YbYtterbium−0.02−1.93est.[36]
71LuLutetium0.238 8(7)23.04(7)[52]
72HfHafnium0.178 0(7)17.18(7)[53]
73TaTantalum0.328 859(23)31.730 1(22)[21]
74WTungsten0.816 26(8)78.76(1)[54]
75ReRhenium0.060 396(64)5.827 3(62)[55]
76OsOsmium1.077 661(24)103.978 5(24)[21]
77IrIridium1.564 057(12)150.908 6(12)[56]
78PtPlatinum2.125 10(5)205.041(5)[57]
79AuGold2.308 610(25)222.747(3)[58]
80HgMercury−0.5(2)−48(20)est.[5]
81TlThallium0.320 053(19)30.880 4(19)[59]
82PbLead0.356 721(2)34.418 3(3)[60]
83BiBismuth0.942 362(13)90.924(2)[61]
84PoPolonium1.40(7)136(7)calc.[62]
85AtAstatine2.415 78(7)233.087(8)[63]
86RnRadon−0.7(2)−68(20)est.[5]
87FrFrancium0.48646.89est.[64][36]
88RaRadium0.109.648 5est.[65][36]
89AcActinium0.3533.77est.[36]
90ThThorium0.607 69(6)58.633(6)[66]
91PaProtactinium0.5553.03est.[67]
92UUranium0.314 97(9)30.390(9)[68]
93NpNeptunium0.4845.85est.[67]
94PuPlutonium−0.50−48.33est.[67]
95AmAmericium0.109.93est.[67]
96CmCurium0.2827.17est.[67]
97BkBerkelium−1.72−165.24est.[67]
98CfCalifornium−1.01−97.31est.[67]
99EsEinsteinium−0.30−28.60est.[67]
100FmFermium0.3533.96est.[67]
101MdMendelevium0.9893.91est.[67]
102NoNobelium−2.33−223.22est.[67]
103LrLawrencium−0.31−30.04est.[67]
111RgRoentgenium1.565151.0calc.[69]
113NhNihonium0.6966.6calc.[70]
115McMoscovium0.36635.3calc.[70]
116LvLivermorium0.77674.9calc.[70]
117TsTennessine1.719165.9calc.[70]
118OgOganesson0.080(6)7.72(58)calc.[71]
119UueUnunennium0.66263.87calc.[64]
120UbnUnbinilium0.0212.03calc.[72]
121UbuUnbiunium0.5755calc.[36]

Molecules

The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.

MoleculeNameEea (eV)Eea (kJ/mol)References
Diatomics
16OHHydroxyl1.827 6488(11)176.3413(2)Goldfarb et al. (2005)
16OD1.825 53(4)176.137(5)Schulz et al. (1982)
C2Dicarbon3.269(6)315.4(6)Ervin & Lineberger (1991)
BOBoron oxide2.508(8)242.0(8)Wenthold et al. (1997)
NONitric oxide0.026(5)2.5(5)Travers, Cowles & Ellison (1989)
O2Dioxygen0.450(2)43.42(20)Schiedt & Weinkauf (1995)
32SHSulfhydryl2.314 7283(17)223.3373(2)Chaibi et al. (2006)
F2Difluorine3.08(10)297(10)Janousek & Brauman (1979)
Cl2Dichlorine2.35(8)227(8)Janousek & Brauman (1979)
Br2Dibromine2.53(8)244(8)Janousek & Brauman (1979)
I2Diiodine2.524(5)243.5(5)Zanni et al. (1997)
IBrIodine bromide2.512(3)242.4(4)Sheps, Miller & Lineberger (2009)
LiClLithium chloride0.593(10)57.2(10)Miller et al. (1986)
FeOIron(II) oxide1.4950(5)144.25(6)Kim, Weichman & Neumark (2015)
CNCyano radical3.862(4)[73]
Triatomics
NO2Nitrogen dioxide2.273(5)219.3(5)Ervin, Ho & Lineberger (1988)
O3Ozone2.1028(25)202.89(25)Novick et al. (1979)
SO2Sulfur dioxide1.107(8)106.8(8)Nimlos & Ellison (1986)
Larger polyatomics
CH2CHOVinyloxy1.8248(+2-6)176.07(+3-7)Rienstra-Kiracofe et al. (2002) after Mead et al. (1984)
C6H6Benzene−0.70(14)−68(14)Ruoff et al. (1995)
C6H4O2p-Benzoquinone1.860(5)179.5(6)Schiedt & Weinkauf (1999)
BF3Boron trifluoride2.65(10)256(10)Page & Goode (1969)
HNO3Nitric acid0.57(15)55(14)Janousek & Brauman (1979)
CH3NO2Nitromethane0.172(6)16.6(6)Adams et al. (2009)
POCl3Phosphoryl chloride1.41(20)136(20)Mathur et al. (1976)
SF6Sulfur hexafluoride1.03(5)99.4(49)Troe, Miller & Viggiano (2012)
C2(CN)4Tetracyanoethylene3.17(20)306(20)Chowdhury & Kebarle (1986)
WF6Tungsten hexafluoride3.5(1)338(10)George & Beauchamp (1979)
UF6Uranium hexafluoride5.06(20)488(20)NIST chemistry webbook after Borshchevskii et al. (1988)
C60Buckminsterfullerene2.6835(6)258.92(6)Huang et al. (2014)

Second and third electron affinity

ZElementNameElectron affinity (eV)Electron affinity (kJ/mol)References
7NNitrogen−6.98−673[74]
7N2−Nitrogen−11.09−1070[74]
8OOxygen−7.71−744[74]
15PPhosphorus−4.85−468[74]
15P2−Phosphorus−9.18−886[74]

Bibliography

  • Janousek, Bruce K.; Brauman, John I. (1979), "Electron affinities", in Bowers, M. T. (ed.), Gas Phase Ion Chemistry, vol. 2, New York: Academic Press, p. 53.
  • Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002), "Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations", Chem. Rev., vol. 102, no. 1, pp. 231–282, doi:10.1021/cr990044u, PMID 11782134.
  • Updated values can be found in the NIST chemistry webbook for around three dozen elements and close to 400 compounds.

Specific molecules

References

  1. Wulfsberg, G. P. (2018). Foundations of Inorganic Chemistry. California: University Science Books. p. 362. ISBN 978-1-891389-95-5.
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) "Electron affinity". doi:10.1351/goldbook.E01977
  3. Lykke, K.R.; Murray, K.K.; Lineberger, W.C. (1991). "Threshold Photodetachment of H". Phys. Rev. A. 43 (11): 6104–7. Bibcode:1991PhRvA..43.6104L. doi:10.1103/PhysRevA.43.6104. PMID 9904944.
  4. Beyer M. & Merkt F. (2018). "Communication: Heavy-Rydberg states of HD and the electron affinity of the deuterium atom". J. Chem. Phys. 149, 031102 doi:10.1063/1.5043186
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 Bratsch, S.G.; Lagowski, J.J. (1986). "Predicted stabilities of monatomic anions in water and liquid ammonia at 298.15 K.". Polyhedron. 5 (11): 1763–1770. doi:10.1016/S0277-5387(00)84854-8.
  6. Haeffler, G.; Hanstorp, D.; Kiyan, I.; Klinkmüller, A.E.; Ljungblad, U.; Pegg, D.J. (1996). "Electron affinity of Li: A state-selective measurement". Phys. Rev. A. 53 (6): 4127–31. arXiv:physics/9703013. Bibcode:1996PhRvA..53.4127H. doi:10.1103/PhysRevA.53.4127. PMID 9913377. S2CID 568882.
  7. Scheer, M.; Bilodeau, R.C.; Haugen, H.K. (1998). "Negative ion of boron: An experimental study of the 3P ground state". Phys. Rev. Lett. 80 (12): 2562–65. Bibcode:1998PhRvL..80.2562S. doi:10.1103/PhysRevLett.80.2562.
  8. 1 2 Bresteau, D.; Drag, C.; Blondel, C. (2016). "Isotope shift of the electron affinity of carbon measured by photodetachment microscopy". Phys. Rev. A. 93 (1): 013414. Bibcode:2016PhRvA..93a3414B. doi:10.1103/PhysRevA.93.013414.
  9. Kristiansson, M.K.; Chartkunchand, K.; Eklund, G.; et al. (2022). "High-precision electron affinity of oxygen". Nat Commun. 13 (1): 5906. Bibcode:2022NatCo..13.5906K. doi:10.1038/s41467-022-33438-y. PMC 9546871. PMID 36207329.
  10. 1 2 Blondel, C.; Delsart, C.; Valli, C.; Yiou, S.; Godefroid, M.R.; Van Eck, S. (2001). "Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O, and the hyperfine structure of 17O". Phys. Rev. A. 64 (5): 052504. Bibcode:2001PhRvA..64e2504B. doi:10.1103/PhysRevA.64.052504.
  11. 1 2 Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R. (1989). "High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams". Phys. Rev. A. 40 (7): 3698–3701. Bibcode:1989PhRvA..40.3698B. doi:10.1103/PhysRevA.40.3698. PMID 9902584.
  12. Blondel, C.; Delsart, C.; Goldfarb, F. (2001). "Electron spectrometry at the μeV level and the electron affinities of Si and F". Journal of Physics B. 34: L281–88. doi:10.1088/0953-4075/34/9/101. S2CID 250875182.
  13. 1 2 Hotop, H.; Lineberger, W.C. (1985). "Binding energies in atomic negative ions. II". J. Phys. Chem. Ref. Data. 14 (3): 731. Bibcode:1985JPCRD..14..731H. doi:10.1063/1.555735.
  14. Scheer, M.; Bilodeau, R.C.; Thøgersen, J.; Haugen, H.K. (1998). "Threshold Photodetachment of Al: Electron Affinity and Fine Structure". Phys. Rev. A. 57 (3): R1493–96. Bibcode:1998PhRvA..57.1493S. doi:10.1103/PhysRevA.57.R1493.
  15. 1 2 Chaibi, W.; Peláez, R.J.; Blondel, C.; Drag, C.; Delsart, C. (2010). "Effect of a magnetic field in photodetachment microscopy". Eur. Phys. J. D. 58 (1): 29. Bibcode:2010EPJD...58...29C. doi:10.1140/epjd/e2010-00086-7. S2CID 17677037.
  16. Peláez, R.J.; Blondel, C.; Vandevraye, M.; Drag, C.; Delsart, C. (2011). "Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus". J. Phys. B: At. Mol. Opt. Phys. 44 (19): 195009. Bibcode:2011JPhB...44s5009P. doi:10.1088/0953-4075/44/19/195009. hdl:10261/62382. S2CID 12279331.
  17. Carette, T.; Drag, C.; Scharf, O.; Blondel, C.; Delsart, C.; Fischer, C. (2000). "F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory". Phys. Rev. A. 81: 042522. arXiv:1002.1297. doi:10.1103/PhysRevA.81.042522. S2CID 54056163.
  18. Berzinsh, U.; Gustafsson, M.; Hanstorp, D.; Klinkmüller, A.; Ljungblad, U.; Martensson-Pendrill, A.M. (1995). "Isotope shift in the electron affinity of chlorine". Phys. Rev. A. 51 (1): 231–238. arXiv:physics/9804028. Bibcode:1995PhRvA..51..231B. doi:10.1103/PhysRevA.51.231. PMID 9911578. S2CID 3225884.
  19. Andersson, K.T.; Sandstrom, J.; Kiyan, I.Y.; Hanstorp, D.; Pegg, D.J. (2000). "Measurement of the electron affinity of potassium". Phys. Rev. A. 62 (2): 022503. Bibcode:2000PhRvA..62b2503A. doi:10.1103/PhysRevA.62.022503.
  20. Petrunin, V.V.; Andersen, H.H.; Balling, P.; Andersen, T. (1996). "Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting". Phys. Rev. Lett. 76 (5): 744–47. Bibcode:1996PhRvL..76..744P. doi:10.1103/PhysRevLett.76.744. PMID 10061539.
  21. 1 2 3 4 5 6 7 8 Ning, Chuangang; Lu, Yuzhu (2022). "Electron Affinities of Atoms and Structures of Atomic Negative Ions". J. Phys. Chem. Ref. Data. 51 (2): 021502. Bibcode:2022JPCRD..51b1502N. doi:10.1063/5.0080243. S2CID 248844032.
  22. Tang, R.; Fu, X.; Ning, C. (2018). "Accurate electron affinity of Ti and fine structures of its anions". J. Chem. Phys. 149 (13): 134304. Bibcode:2018JChPh.149m4304T. doi:10.1063/1.5049629. PMID 30292212. S2CID 52934687.
  23. Fu, X.; Luo, Z.; Chen, X.; Li, J.; Ning, C. (2016). "Accurate electron affinity of V and fine-structure splittings of V via slow-electron velocity-map imaging". J. Chem. Phys. 145 (16): 164307. Bibcode:2016JChPh.145p4307F. doi:10.1063/1.4965928. PMID 27802620.
  24. Chen, X.; Luo, Z.; Li, J.; Ning, C. (2016). "Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions". Sci. Rep. 6: 24996. Bibcode:2016NatSR...624996C. doi:10.1038/srep24996. PMC 4853736. PMID 27138292.
  25. Chen, X.; Ning, C. (2016). "Accurate electron affinity of Co and fine-structure splittings of Co via slow-electron velocity-map imaging". Phys. Rev. A. 93 (5): 052508. Bibcode:2016PhRvA..93e2508C. doi:10.1103/PhysRevA.93.052508.
  26. 1 2 3 Scheer, M.; Brodie, C.A.; Bilodeau, R.C.; Haugen, H.K. (1998). "Laser spectroscopic measurements of binding energies and fine-structure splittings of Co, Ni, Rh, and Pd". Phys. Rev. A. 58 (3): 2051–62. Bibcode:1998PhRvA..58.2051S. doi:10.1103/PhysRevA.58.2051.
  27. 1 2 Bilodeau, R.C.; Scheer, M.; Haugen, H.K. (1998). "Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr, Mo, Cu, and Ag". Journal of Physics B. 31: 3885–91. doi:10.1088/0953-4075/31/17/013. S2CID 250869727.
  28. Tang, R.; Fu, X.; Lu, Y.; Ning, C. (2020). "Accurate electron affinity of Ga and fine structures of its anions". J. Chem. Phys. 152 (11): 114303. Bibcode:2020JChPh.152k4303T. doi:10.1063/1.5144962. PMID 32199425. S2CID 214617280.
  29. Bresteau, D.; Babilotte, Ph.; Drag, C.; Blondel, C. (2015). "Intra-cavity photodetachment microscopy and the electron affinity of germanium". J. Phys. B: At. Mol. Opt. Phys. 48 (12): 125001. Bibcode:2015JPhB...48l5001B. doi:10.1088/0953-4075/48/12/125001.
  30. Walter, C. W.; Gibson, N. D.; Field, R. L.; Snedden, A. P.; Shapiro, J. Z.; Janczak, C. M.; Hanstorp, D. (2009). "Electron affinity of arsenic and the fine structure of As measured using infrared photodetachment threshold spectroscopy". Phys. Rev. A. 80 (1): 014501. Bibcode:2009PhRvA..80a4501W. doi:10.1103/physreva.80.014501.
  31. Vandevraye, M.; Drag, C.; Blondel, C. (2012). "Electron affinity of selenium measured by photodetachment microscopy". Phys. Rev. A. 85 (1): 015401. Bibcode:2012PhRvA..85a5401V. doi:10.1103/PhysRevA.85.015401.
  32. Frey, P.; Breyer, F.; Hotop, H. (1978). "High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. Journal of Physics BJ. Phys. B: At. Mol. Phys". Chinese Journal of Chemical Physics. 11: L589–94. doi:10.1088/0022-3700/11/19/005.
  33. Andersen, H.H.; Petrunin, V.V.; Kristensen, P.; Andersen, T. (1997). "Structural properties of the negative strontium ion: Binding energy and fine-structure splitting". Phys. Rev. A. 55 (4): 3247–49. Bibcode:1997PhRvA..55.3247A. doi:10.1103/PhysRevA.55.3247.
  34. Fu, X.; Li, J.; Luo, Z.; Chen, X.; Ning, C. (2017). "Precision measurement of electron affinity of Zr and fine structures of its negative ions. Journal of Chemical Physics J. Chem. Phys". The Journal of Chemical Physics. 147 (6): 064306. doi:10.1063/1.4986547. PMID 28810756.
  35. Luo Z., Chen X., Li J. & Ning C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A 93, 020501(R) doi:10.1103/PhysRevA.93.020501
  36. 1 2 3 4 5 6 CRC Handbook of Chemistry and Physics 92nd Edn. (2011–2012); W. M. Haynes. Boca Raton, FL: CRC Press. "Section 10, Atomic, Molecular, and Optical Physics; Electron Affinities".
  37. Walter, C.W.; Gibson, N.D.; Carman, D.J.; Li, Y.-G.; Matyas, D.J. (2010). "Electron affinity of indium and the fine structure of In measured using infrared photodetachment threshold spectroscopy". Phys. Rev. A. 82 (3): 032507. Bibcode:2010PhRvA..82c2507W. doi:10.1103/PhysRevA.82.032507.
  38. Vandevraye, M.; Drag, C.; Blondel, C. (2013). "Electron affinity of tin measured by photodetachment microscopy". Journal of Physics B: Atomic, Molecular and Optical Physics. 46 (12): 125002. Bibcode:2013JPhB...46l5002V. doi:10.1088/0953-4075/46/12/125002. S2CID 121556183.
  39. Scheer, M.; Haugen, H.K.; Beck, D.R. (1997). "Single- and Multiphoton Infrared Laser Spectroscopy of Sb: A Case Study". Phys. Rev. Lett. 79 (21): 4104–7. Bibcode:1997PhRvL..79.4104S. doi:10.1103/PhysRevLett.79.4104.
  40. Haeffler, G.; Klinkmüller, A.E.; Rangell, J.; Berzinsh, U.; Hanstorp, D. (1996). "The electron affinity of tellurium". Z. Phys. D. 38 (3): 211. arXiv:physics/9703012. Bibcode:1996ZPhyD..38..211H. doi:10.1007/s004600050085. S2CID 10789594.
  41. Peláez, R.J.; Blondel, C.; Delsart, C.; Drag, C. (2009). "Pulsed photodetachment microscopy and the electron affinity of iodine". J. Phys. B. 42 (12): 125001. Bibcode:2009JPhB...42l5001P. doi:10.1088/0953-4075/42/12/125001. S2CID 123302487.
  42. Rothe, S.; Sundberg, J.; Welander, J.; Chrysalidis, K.; Goodacre, T. (2017). "D., Fedosseev V., ... & Kron T. (2017). Laser photodetachment of radioactive 128I". J. Phys. G: Nucl. Part. Phys. 44: 104003. doi:10.1088/1361-6471/aa80aa.
  43. Scheer, M.; Thøgersen, J.; Bilodeau, R.C.; Brodie, C.A.; Haugen, H.K. (1998). "Experimental Evidence that the 6s6p 3PJ States of Cs are Shape Resonances". Phys. Rev. Lett. 80 (4): 684–87. Bibcode:1998PhRvL..80..684S. doi:10.1103/PhysRevLett.80.684.
  44. Petrunin, V.V.; Volstad, J.D.; Balling, P.; Kristensen, K.; Andersen, T. (1995). "Resonant Ionization Spectroscopy of Ba: Metastable and Stable Ions". Phys. Rev. Lett. 75 (10): 1911–14. Bibcode:1995PhRvL..75.1911P. doi:10.1103/PhysRevLett.75.1911. PMID 10059160.
  45. Blondel, C. (2020). "Comment on "Measurement of the electron affinity of the lanthanum atom"" (PDF). Phys. Rev. A. 101 (1): 016501. Bibcode:2020PhRvA.101a6501B. doi:10.1103/PhysRevA.101.016501. S2CID 213221561.
  46. Fu, X.-X.; Tang, R.-L.; Lu, Y.-Z.; Ning, C.-G. (2020). "Accurate electron affinity of atomic cerium and excited states of its anion". Chin. Phys. B. 29 (7): 073201. Bibcode:2020ChPhB..29g3201F. doi:10.1088/1674-1056/ab90e9. S2CID 250763618.
  47. 1 2 3 Fu, X.; Lu, Y.; Tang, R.; Ning, C. (2020). "Electron affinity measurements of lanthanide atoms: Pr, Nd, and Tb". Phys. Rev. A. 101 (2): 022502. Bibcode:2020PhRvA.101b2502F. doi:10.1103/PhysRevA.101.022502. S2CID 213030610.
  48. 1 2 3 4 Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). "Resonances in low-energy electron elastic cross sections for lanthanide atoms". Phys. Rev. A. 79 (1): 012714. Bibcode:2009PhRvA..79a2714F. doi:10.1103/PhysRevA.79.012714.
  49. Cheng, S.B.; Castleman, A. W. Jr (2015). "Direct experimental observation of weakly-bound character of the attached electron in europium anion". Sci. Rep. 5: 12414. Bibcode:2015NatSR...512414C. doi:10.1038/srep12414. PMC 4510523. PMID 26198741.
  50. Nadeau, M. J.; Garwan, M. A.; Zhao, X. L.; Litherland, A. E. (1997). "A negative ion survey; towards the completion of the periodic table of the negative ions". Nuclear Instruments and Methods in Physics Research B. 123 (1–4): 521–526. Bibcode:1997NIMPB.123..521N. doi:10.1016/S0168-583X(96)00749-5.
  51. Davis, V.T.; Thompson, J.S. (2001). "Measurement of the electron affinity of thulium". Phys. Rev. A. 65 (1): 010501. Bibcode:2001PhRvA..65a0501D. doi:10.1103/PhysRevA.65.010501.
  52. Fu, X.X.; Tang, R.L.; Lu, Y.Z.; Ning, C.G. (2019). "Measurement of electron affinity of atomic lutetium via the cryo-SEVI Method". Chinese Journal of Chemical Physics. 32 (2): 187. Bibcode:2019ChJCP..32..187F. doi:10.1063/1674-0068/cjcp1812293. S2CID 165042639.
  53. Tang R., Chen X., Fu X., Wang H. and Ning C. (2018). Electron affinity of the hafnium atom. Phys. Rev. A 98 020501(R) doi:10.1103/PhysRevA.98.020501.
  54. Lindahl, A.O.; et al. (2010). "The electron affinity of tungsten". Eur. Phys. J. D. 60 (2): 219. Bibcode:2010EPJD...60..219L. doi:10.1140/epjd/e2010-00199-y. S2CID 122176839.
  55. Chen, X.L.; Ning, C.G. (2017). "Observation of Rhenium Anion and Electron Affinity of Re". J. Phys. Chem. Lett. 8 (12): 2735–2738. doi:10.1021/acs.jpclett.7b01079. PMID 28581753.
  56. Lu Y., Zhao J., Tang R., Fu X. & Ning C. (2020). "Measurement of electron affinity of iridium atom and photoelectron angular distributions of iridium anion". J. Chem. Phys. 152, 034302 doi:10.1063/1.5134535
  57. Bilodeau, R.C.; Scheer, M.; Haugen, H.K.; Brooks, R.L. (1999). "Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law". Phys. Rev. A. 61 (1): 012505. Bibcode:1999PhRvA..61a2505B. doi:10.1103/PhysRevA.61.012505.
  58. Andersen, T.; Haugen, H.K.; Hotop, H. (1999). "Binding Energies in Atomic Negative Ions: III". J. Phys. Chem. Ref. Data. 28 (6): 1511. Bibcode:1999JPCRD..28.1511A. doi:10.1063/1.556047.
  59. Walter, C.W.; Gibson, N.D.; Spielman, S.E. (2020). "Electron affinity of thallium measured with threshold spectroscopy". Phys. Rev. A. 101 (5): 052511. Bibcode:2020PhRvA.101e2511W. doi:10.1103/PhysRevA.101.052511. S2CID 219489520.
  60. Bresteau, D.; Drag, C.; Blondel, C. (2019). "Electron affinity of lead". J. Phys. B: At. Mol. Opt. Phys. 52 (6): 065001. Bibcode:2019JPhB...52f5001B. doi:10.1088/1361-6455/aaf685. S2CID 125298267.
  61. Bilodeau, R.C.; Haugen, H.K. (2001). "Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy". Phys. Rev. A. 64 (2): 024501. Bibcode:2001PhRvA..64b4501B. doi:10.1103/PhysRevA.64.024501.
  62. Junqin, Li; Zilong, Zhao; Martin, Andersson; Xuemei, Zhang; Chongyang, Chen (2012). "Theoretical study for the electron affinities of negative ions with the MCDHF method". J. Phys. B: At. Mol. Opt. Phys. 45 (16): 165004. Bibcode:2012JPhB...45p5004L. doi:10.1088/0953-4075/45/16/165004. S2CID 121023909.
  63. Leimbach, D.; et al. (2020). "The electron affinity of astatine". Nat. Commun. 11 (1): 3824. arXiv:2002.11418. Bibcode:2020NatCo..11.3824L. doi:10.1038/s41467-020-17599-2. PMC 7393155. PMID 32733029.
  64. 1 2 Landau, A.; Eliav, E.; Ishikawa, Y.; Kaldor, U. (2001). "Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119)". J. Chem. Phys. 115 (6): 2389. Bibcode:2001JChPh.115.2389L. doi:10.1063/1.1386413.
  65. Andersen, T. (2004). "Atomic negative ions: Structure, dynamics and collisions". Physics Reports. 394 (4–5): 157–313. Bibcode:2004PhR...394..157A. doi:10.1016/j.physrep.2004.01.001.
  66. Tang R., Si R., Fei Z., Fu X., Lu Y., Brage T., Liu H., Chen C. & Ning C. (2019). "Candidate for Laser Cooling of a Negative Ion: High-Resolution Photoelectron Imaging of Th". Phys. Rev. Lett. 123, 203002 doi:10.1103/PhysRevLett.123.203002
  67. 1 2 3 4 5 6 7 8 9 10 11 12 Guo, Y.; Whitehead, M.A. (1989). "Electron affinities of alkaline-earth element calculated with the local-spin-density-functional theory". Physical Review A. 40 (1): 28–34. doi:10.1103/PhysRevA.40.28. PMID 9901864.
  68. Tang R., Lu Y., Liu H. & Ning C. (2021). "Electron affinity of uranium and bound states of opposite parity in its anion". Phys. Rev. A 103, L050801 doi:10.1103/PhysRevA.103.L050801
  69. Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi (2015). "Electronic structure theory of the superheavy elements". Nucl. Phys. A. 944: 518–550. Bibcode:2015NuPhA.944..518E. doi:10.1016/j.nuclphysa.2015.06.017.
  70. 1 2 3 4 Borschevsky, Anastasia; Pershina, Valeria; Kaldor, Uzi; Eliav, Ephraim. "Fully relativistic ab initio studies of superheavy elements" (PDF). www.kernchemie.uni-mainz.de. Johannes Gutenberg University Mainz. Archived from the original (PDF) on 15 January 2018. Retrieved 15 January 2018.
  71. Guo, Yangyang; Pašteka, Lukáš F.; Eliav, Ephraim; Borschevsky, Anastasia (2021). "Chapter 5: Ionization potentials and electron affinity of oganesson with relativistic coupled cluster method". In Musiał, Monika; Hoggan, Philip E. (eds.). Advances in Quantum Chemistry. Vol. 83. pp. 107–123. ISBN 978-0-12-823546-1.
  72. Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U. (2013). "Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues". Phys. Rev. A. 87 (2): 022502–1–8. Bibcode:2013PhRvA..87b2502B. doi:10.1103/PhysRevA.87.022502.
  73. Bradforth, Stephen E.; Kim, Eun Ha; Arnold, Don W.; Neumark, Daniel M. (1993-01-15). "Photoelectron spectroscopy of CN−, NCO−, and NCS−". The Journal of Chemical Physics. AIP Publishing. 98 (2): 800–810. doi:10.1063/1.464244. ISSN 0021-9606.
  74. 1 2 3 4 5 Rayner-Canham Appendix 5: Data summarised from J. E. Huheey et al., Inorganic Chemistry, 4th ed. (New York: HarperCollins, 1993)
  75. According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.