Dirty data, also known as rogue data,[1] are inaccurate, incomplete or inconsistent data, especially in a computer system or database.[2]
Dirty data can contain such mistakes as spelling or punctuation errors, incorrect data associated with a field, incomplete or outdated data, or even data that has been duplicated in the database. They can be cleaned through a process known as data cleansing.[3]
Dirty Data (Social Science)
In sociology, dirty data refer to secretive data the discovery of which is discrediting to those who kept the data secret. Following the definition of Gary T. Marx, Professor Emeritus of MIT, dirty data are one among four types of data:[4]
- Nonsecretive and nondiscrediting data:
- Routinely available information.
- Secretive and nondiscrediting data:
- Strategic and fraternal secrets, privacy.
- Nonsecretive and discrediting data:
- sanction immunity,
- normative dissensus,
- selective dissensus,
- making good on a threat for credibility,
- discovered dirty data.
- Secretive and discrediting data: Hidden and dirty data.
See also
References
- ↑ Spotless version 12 out now
- ↑ Margaret Chu (2004), "What Are Dirty Data?", Blissful Data, p. 71 et seq, ISBN 9780814407806
- ↑ Wu, S. (2013), "A review on coarse warranty data and analysis" (PDF), Reliability Engineering and System, 114: 1–11, doi:10.1016/j.ress.2012.12.021
- ↑ "Notes on the discovery, collection, and assessment of hidden and". web.mit.edu. Retrieved 2017-02-17.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.