In organic chemistry, the di-π-methane rearrangement is the photochemical rearrangement of a molecule that contains two π-systems separated by a saturated carbon atom. In the aliphatic case, this molecules is a 1,4-diene; in the aromatic case, an allyl-substituted arene. The reaction forms (respectively) an ene- or aryl-substituted cyclopropane. Formally, it amounts to a 1,2 shift of one ene group (in the diene) or the aryl group (in the allyl-aromatic analog), followed by bond formation between the lateral carbons of the non-migrating moiety:[1][2]

Di-π-methane rearrangement
Di-π-methane rearrangement

Discovery

This rearrangement was originally encountered in the photolysis of barrelene to give semibullvalene.[3] Once the mechanism was recognized as general by Howard Zimmerman in 1967, it was clear that the structural requirement was two π groups attached to an sp3-hybridized carbon, and then a variety of further examples was obtained.

Notable examples

(Ph2C=C)2CMe2 rearranges to form Ph2C=C(C-CPh2-CMe2-).
Rearrangement of Mariano's diene.

One example was the photolysis of Mariano's compound, 3,3dimethyl-1,1,5,5tetraphenyl-1,4pentadiene. In this symmetric diene, the active π bonds are conjugated to arenes, which does not inhibit the reaction.[4][5][6]

Irradiation of Ph2C=CCMe2C=CMe2 forms Ph2C•(C-CMe2-C-)C•Me2.  The central atom can then attack the bond towards the isopropyl group (a) or the benzhydryl group (b).  It chooses a, to form Ph2C•C(C•Me2)C=CMe2, which then closes to form a benzhydrilic cyclopropane ring.
Pratt's diene has two possibilities for rearrangement: a and b. It prefers a, because the intermediate diradical is conjugated to the phenyl substituents.

Another was the asymmetric Pratt diene. Pratt's diene demonstrates that the reaction preferentially cyclopropanates aryl substituents, because the reaction pathway preserves the resonant stabil­ization of a benzhydrylic radical inter­mediate.[7]

The barrelene to semibullvalene transformation. ISC is an intersystem crossing.

The barrelene rearrangement is more complex than the Mariano and Pratt examples since there are two sp3-hybridized carbons. Each bridgehead carbon has three (ethylenic) π bonds, and any two can undergo the diπ-methane rearrangement. Moreover, unlike the acyclic Mariano and Pratt dienes, the barrelene reaction requires a triplet excited state. Thus acetone is used in the barrel­ene reaction; acetone captures the light and then delivers triplet excitation to the barrelene reactant. In the final step of the rearrangement there is a spin flip, to provide paired electrons and a new σ bond.

As excited-state probe

The dependence of the di-π-methane re­arrange­ment on the multiplicity of the excited state arises from the free-rotor effect.[8] Triplet 1,4-dienes freely undergo cis-trans inter­conversion of diene double bonds (i.e. free rotation). In acyclic dienes, this free rotation leads to diradical reconnection, short-circuiting the di-π-methane process. Singlet excited states do not rotate and may thus undergo the di-π-methane mechanism. For cyclic dienes, as in the barrelene example, the ring structure can prevent free-rotatory dissipation, and may in fact require bond rotation to complete the rearrangement.

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) "di-π-methane rearrangement". doi:10.1351/goldbook.D01745
  2. Zimmerman, Howard E.; Armesto, Diego (1996). "Synthetic Aspects of the Di-π-methane Rearrangement". Chemical Reviews. 96 (8): 3065–3112. doi:10.1021/cr910109c. PMID 11848853.
  3. Zimmerman, H. E.; Grunewald, G. L. (1966). "The Chemistry of Barrelene. III. A Unique Photoisomerization to Semibullvalene". J. Am. Chem. Soc. 88 (1): 183–184. doi:10.1021/ja00953a045.
  4. Zimmerman, Howard E.; Binkley, Roger W.; Givens, Richard S.; Sherwin, Maynard A. (1967). "Mechanistic organic photochemistry. XXIV. The mechanism of the conversion of barrelene to semibullvalene. A general photochemical process". Journal of the American Chemical Society. 89 (15): 3932–3933. doi:10.1021/ja00991a064. ISSN 0002-7863.
  5. Zimmerman, H. E.; Mariano, P. S (1969). "The Di-π-methane Rearrangement. Interaction of Electronically Excited Vinyl Chromophores". J. Am. Chem. Soc. 91: 1718–1727. doi:10.1021/ja01035a021.
  6. Hixson, Stephen S.; Mariano, Patrick S.; Zimmerman, Howard E. (1973). "The Di-π-methane and Oxa-di-π-methane rearrangements". Chemical Reviews. 73 (5): 531. doi:10.1021/cr60285a005.
  7. Zimmerman, H. E.; Pratt, A. C (1970). "Unsymmetrical Substitution and the Direction of the Di-π-methane Rearrangement; Mechanistic and Exploratory Organic Photochemistry. LVI". J. Am. Chem. Soc. 92: 6259–6267. doi:10.1021/ja00724a026.
  8. Zimmerman, H. E.; Schissel, D. N (1986). "Di-π-methane Rearrangement of Highly Sterically Congested Molecules: Inhibition of Free Rotor Energy Dissipation. Mechanistic and Exploratory Organic Photochemistry". J. Org. Chem. 51: 196–207. doi:10.1021/jo00352a013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.