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Chapter 1

Gauss’s law

This article is about Gauss’s law concerning the elec-
tric field. For analogous law concerning different
fields, see Gauss’s law for magnetism and Gauss’s law
for gravity. For Gauss’s theorem, a mathematical theo-
rem relevant to all of these laws, see Divergence theorem.

In physics,Gauss’s law, also known asGauss’s flux the-
orem, is a law relating the distribution of electric charge
to the resulting electric field.
The law was formulated by Carl Friedrich Gauss in 1835,
but was not published until 1867.[1] It is one of Maxwell’s
four equations, which form the basis of classical elec-
trodynamics, the other three being Gauss’s law for mag-
netism, Faraday’s law of induction, and Ampère’s law
with Maxwell’s correction. Gauss’s law can be used to
derive Coulomb’s law,[2] and vice versa.

1.1 Qualitative description

In words, Gauss’s law states that:

The net electric flux through any closed surface
is equal to 1⁄ε times the net electric charge en-
closed within that closed surface.[3]

Gauss’s law has a close mathematical similarity with a
number of laws in other areas of physics, such as Gauss’s
law for magnetism and Gauss’s law for gravity. In fact,
any "inverse-square law" can be formulated in a way sim-
ilar to Gauss’s law: For example, Gauss’s law itself is es-
sentially equivalent to the inverse-square Coulomb’s law,
and Gauss’s law for gravity is essentially equivalent to the
inverse-square Newton’s law of gravity.
Gauss’s law is something of an electrical analogue of
Ampère’s law, which deals with magnetism.
The law can be expressed mathematically using vector
calculus in integral form and differential form, both are
equivalent since they are related by the divergence theo-
rem, also called Gauss’s theorem. Each of these forms in
turn can also be expressed two ways: In terms of a re-
lation between the electric field E and the total electric

charge, or in terms of the electric displacement field D
and the free electric charge.[4]

1.2 Equation involving E field

Gauss’s law can be stated using either the electric field E
or the electric displacement field D. This section shows
some of the forms with E; the form with D is below, as
are other forms with E.

1.2.1 Integral form

Gauss’s law may be expressed as:[5]

ΦE =
Q

ε0

where ΦE is the electric flux through a closed surface S
enclosing any volume V, Q is the total charge enclosed
within S, and ε0 is the electric constant. The electric flux
ΦE is defined as a surface integral of the electric field:

ΦE = S E · dA

where E is the electric field, dA is a vector representing
an infinitesimal element of area,[note 1] and · represents the
dot product of two vectors.
Since the flux is defined as an integral of the electric field,
this expression of Gauss’s law is called the integral form.

Applying the integral form

Main article: Gaussian surface
See also Capacitance (Gauss’s law)

If the electric field is known everywhere, Gauss’s law
makes it quite easy, in principle, to find the distribution
of electric charge: The charge in any given region can be
deduced by integrating the electric field to find the flux.
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2 CHAPTER 1. GAUSS’S LAW

However, much more often, it is the reverse problem that
needs to be solved: The electric charge distribution is
known, and the electric field needs to be computed. This
is much more difficult, since if you know the total flux
through a given surface, that gives almost no information
about the electric field, which (for all you know) could go
in and out of the surface in arbitrarily complicated pat-
terns.
An exception is if there is some symmetry in the situation,
which mandates that the electric field passes through the
surface in a uniform way. Then, if the total flux is known,
the field itself can be deduced at every point. Common
examples of symmetries which lend themselves to Gauss’s
law include cylindrical symmetry, planar symmetry, and
spherical symmetry. See the article Gaussian surface for
examples where these symmetries are exploited to com-
pute electric fields.

1.2.2 Differential form

By the divergence theorem, Gauss’s law can alternatively
be written in the differential form:

∇ · E =
ρ

ε0

where ∇ ·E is the divergence of the electric field, ε0 is the
electric constant, and ρ is the total electric charge density
(charge per unit volume).

1.2.3 Equivalence of integral and differen-
tial forms

Main article: Divergence theorem

The integral and differential forms are mathematically
equivalent, by the divergence theorem. Here is the ar-
gument more specifically.

1.3 Equation involving D field

See also: Maxwell’s equations

1.3.1 Free, bound, and total charge

Main article: Electric polarization

The electric charge that arises in the simplest textbook sit-
uations would be classified as “free charge”—for exam-
ple, the charge which is transferred in static electricity,

or the charge on a capacitor plate. In contrast, “bound
charge” arises only in the context of dielectric (polariz-
able) materials. (All materials are polarizable to some
extent.) When such materials are placed in an external
electric field, the electrons remain bound to their respec-
tive atoms, but shift a microscopic distance in response
to the field, so that they're more on one side of the atom
than the other. All these microscopic displacements add
up to give a macroscopic net charge distribution, and this
constitutes the “bound charge”.
Althoughmicroscopically, all charge is fundamentally the
same, there are often practical reasons for wanting to treat
bound charge differently from free charge. The result is
that the more “fundamental” Gauss’s law, in terms of E
(above), is sometimes put into the equivalent form below,
which is in terms of D and the free charge only.

1.3.2 Integral form

This formulation of Gauss’s law states the total charge
form:

ΦD = Qfree

where ΦD is the D-field flux through a surface S which
encloses a volumeV, andQ⛵ᵣₑₑ is the free charge contained
in V. The flux ΦD is defined analogously to the flux ΦE
of the electric field E through S:

ΦD = S D · dA

1.3.3 Differential form

The differential form of Gauss’s law, involving free
charge only, states:

∇ · D = ρfree

where ∇ ·D is the divergence of the electric displacement
field, and ρ⛵ᵣₑₑ is the free electric charge density.

1.4 Equivalence of total and free
charge statements

1.5 Equation for linear materials

In homogeneous, isotropic, nondispersive, linear materi-
als, there is a simple relationship between E and D:
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1.8. NOTES 3

D = εE

where ε is the permittivity of the material. For the case
of vacuum (aka free space), ε = ε0. Under these circum-
stances, Gauss’s law modifies to

ΦE =
Qfree
ε

for the integral form, and

∇ · E =
ρfree
ε

for the differential form.

1.6 Relation to Coulomb’s law

1.6.1 Deriving Gauss’s law from
Coulomb’s law

Gauss’s law can be derived from Coulomb’s law.

Note that since Coulomb’s law only applies to stationary
charges, there is no reason to expect Gauss’s law to hold
for moving charges based on this derivation alone. In fact,
Gauss’s law does hold for moving charges, and in this re-
spect Gauss’s law is more general than Coulomb’s law.

1.6.2 Deriving Coulomb’s law from
Gauss’s law

Strictly speaking, Coulomb’s law cannot be derived from
Gauss’s law alone, since Gauss’s law does not give any
information regarding the curl of E (see Helmholtz de-
composition and Faraday’s law). However, Coulomb’s
law can be proven from Gauss’s law if it is assumed,
in addition, that the electric field from a point charge is
spherically-symmetric (this assumption, like Coulomb’s
law itself, is exactly true if the charge is stationary, and
approximately true if the charge is in motion).

1.7 See also

• Method of image charges

• Uniqueness theorem for Poisson’s equation

1.8 Notes
[1] More specifically, the infinitesimal area is thought of as

planar and with area dA. The vector dA is normal to this
area element and has magnitude dA.[6]

1.9 References
[1] Bellone, Enrico (1980). A World on Paper: Studies on the

Second Scientific Revolution.

[2] Halliday, David; Resnick, Robert (1970). Fundamentals
of Physics. John Wiley & Sons, Inc. pp. 452–53.

[3] Serway, Raymond A. (1996). Physics for Scientists and
Engineers with Modern Physics, 4th edition. p. 687.

[4] I.S. Grant, W.R. Phillips (2008). Electromagnetism (2nd
ed.). Manchester Physics, JohnWiley & Sons. ISBN 978-
0-471-92712-9.

[5] I.S. Grant, W.R. Phillips (2008). Electromagnetism (2nd
ed.). Manchester Physics, JohnWiley & Sons. ISBN 978-
0-471-92712-9.

[6] Matthews, Paul (1998). Vector Calculus. Springer. ISBN
3-540-76180-2.

[7] See, for example, Griffiths, David J. (2013). Introduction
to Electrodynamics (4th ed.). Prentice Hall. p. 50.

Jackson, John David (1998). Classical Electrodynamics,
3rd ed., New York: Wiley. ISBN 0-471-30932-X.

1.10 External links
• MIT Video Lecture Series (30 x 50 minute
lectures)- Electricity and Magnetism Taught by Pro-
fessor Walter Lewin.

• section on Gauss’s law in an online textbook

• MISN-0-132 Gauss’s Law for Spherical Symmetry
(PDF file) by Peter Signell for Project PHYSNET.

• MISN-0-133 Gauss’s Law Applied to Cylindrical and
Planar Charge Distributions (PDF file) by Peter
Signell for Project PHYSNET.
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Chapter 2

Electric flux

In electromagnetism, electric flux is the measure of flow
of the electric field through a given area. Electric flux
is proportional to the number of electric field lines going
through a normally perpendicular surface. If the electric
field is uniform, the electric flux passing through a surface
of vector area S is

ΦE = E · S = ES cos θ,

where E is the electric field (having units of V/m), E is its
magnitude, S is the area of the surface, and θ is the angle
between the electric field lines and the normal (perpen-
dicular) to S.
For a non-uniform electric field, the electric flux dΦE
through a small surface area dS is given by

dΦE = E · dS

(the electric field, E, multiplied by the component of area
perpendicular to the field). The electric flux over a surface
S is therefore given by the surface integral:

ΦE =

∫∫
S

E · dS

where E is the electric field and dS is a differential area
on the closed surface S with an outward facing surface
normal defining its direction.
For a closed Gaussian surface, electric flux is given by:

ΦE = S E · dS = Q
ϵ0

where

E is the electric field,
S is any closed surface,
Q is the total electric charge inside the surface
S,

ε0 is the electric constant (a universal constant,
also called the "permittivity of free space”) (ε0
≈ 8.854 187 817... x 10−12 farads per meter
(F·m−1)).

This relation is known as Gauss’ law for electric field in
its integral form and it is one of the four Maxwell’s equa-
tions.
While the electric flux is not affected by charges that are
not within the closed surface, the net electric field, E, in
the Gauss’ Law equation, can be affected by charges that
lie outside the closed surface. While Gauss’ Law holds for
all situations, it is only useful for “by hand” calculations
when high degrees of symmetry exist in the electric field.
Examples include spherical and cylindrical symmetry.
Electrical flux has SI units of volt metres (Vm), or, equiv-
alently, newton metres squared per coulomb (N m2 C−1).
Thus, the SI base units of electric flux are kg·m3·s−3·A−1.
Its dimensional formula is [L3MT−3I−1].

2.1 See also
• Magnetic flux

• Maxwell’s equations

related websites are following: http://www.citycollegiate.
com/coulomb4_XII.htm[1]

2.2 References
[1] electric flux

2.3 External links
• Electric flux — HyperPhysics
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Chapter 3

Ampère’s circuital law

“Ampère’s law” redirects here. For the law describing
forces between current-carrying wires, see Ampère’s
force law.

In classical electromagnetism, Ampère’s circuital law,
discovered by André-Marie Ampère in 1826,[1] relates
the integrated magnetic field around a closed loop to the
electric current passing through the loop. James Clerk
Maxwell derived it again using hydrodynamics in his 1861
paper On Physical Lines of Force and it is now one of
the Maxwell equations, which form the basis of classical
electromagnetism.

3.1 Ampère’s original circuital law

Ampère’s law relates magnetic fields to electric currents
that produce them. Ampère’s law determines the mag-
netic field associated with a given current, or the current
associated with a given magnetic field, provided that the
electric field does not change over time. In its original
form, Ampère’s circuital law relates a magnetic field to
its electric current source. The law can be written in two
forms, the “integral form” and the “differential form”.
The forms are equivalent, and related by the Kelvin–
Stokes theorem. It can also be written in terms of either
the B or H magnetic fields. Again, the two forms are
equivalent (see the "proof" section below).
Ampère’s circuital law is now known to be a correct
law of physics in a magnetostatic situation: The system
is static except possibly for continuous steady currents
within closed loops. In all other cases the law is incor-
rect unless Maxwell’s correction is included (see below).

3.1.1 Integral form

In SI units (cgs units are later), the “integral form”
of the original Ampère’s circuital law is a line inte-
gral of the magnetic field around some closed curve C
(arbitrary but must be closed). The curve C in turn
bounds both a surface S which the electric current passes
through (again arbitrary but not closed—since no three-
dimensional volume is enclosed by S), and encloses the

current. The mathematical statement of the law is a re-
lation between the total amount of magnetic field around
some path (line integral) due to the current which passes
through that enclosed path (surface integral). It can be
written in a number of forms.[2][3]

In terms of total current, which includes both free and
bound current, the line integral of the magnetic B-field
(in tesla, T) around closed curve C is proportional to the
total current Iₑ⛼⛳ passing through a surface S (enclosed by
C):

∮
C

B · dℓ = µ0

∫∫
S

J · dS = µ0Ienc

where J is the total current density (in ampere per square
metre, Am−2).
Alternatively in terms of free current, the line integral of
the magnetic H-field (in ampere per metre, Am−1) around
closed curve C equals the free current I⛵, ₑ⛼⛳ through a
surface S:

∮
C

H · dℓ =

∫∫
S

Jf · dS = If,enc

where J⛵ is the free current density only. Furthermore

• ∮
C
is the closed line integral around the closed curve

C,

• ∫∫
S
denotes a 2d surface integral over S enclosed by

C

• • is the vector dot product,

• dℓ is an infinitesimal element (a differential) of the
curve C (i.e. a vector with magnitude equal to the
length of the infinitesimal line element, and direc-
tion given by the tangent to the curve C)

• dS is the vector area of an infinitesimal element of
surface S (that is, a vector with magnitude equal to
the area of the infinitesimal surface element, and di-
rection normal to surface S. The direction of the nor-
mal must correspond with the orientation ofC by the
right hand rule), see below for further explanation of
the curve C and surface S.
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TheB andH fields are related by the constitutive equation

B = µ0H

where μ0 is the magnetic constant.
There are a number of ambiguities in the above definitions
that require clarification and a choice of convention.

1. First, three of these terms are associated with sign
ambiguities: the line integral

∮
C
could go around the

loop in either direction (clockwise or counterclock-
wise); the vector area dS could point in either of the
two directions normal to the surface; and Iₑ⛼⛳ is the
net current passing through the surface S, meaning
the current passing through in one direction, minus
the current in the other direction—but either direc-
tion could be chosen as positive. These ambiguities
are resolved by the right-hand rule: With the palm
of the right-hand toward the area of integration, and
the index-finger pointing along the direction of line-
integration, the outstretched thumb points in the di-
rection that must be chosen for the vector area dS.
Also the current passing in the same direction as dS
must be counted as positive. The right hand grip rule
can also be used to determine the signs.

2. Second, there are infinitely many possible surfaces
S that have the curve C as their border. (Imagine a
soap film on a wire loop, which can be deformed by
moving the wire). Which of those surfaces is to be
chosen? If the loop does not lie in a single plane, for
example, there is no one obvious choice. The answer
is that it does not matter; it can be proven that any
surface with boundary C can be chosen.

3.1.2 Differential form

By the Stokes’ theorem, this equation can also be written
in a “differential form”. Again, this equation only applies
in the case where the electric field is constant in time,
meaning the currents are steady (time-independent, else
the magnetic field would change with time); see below for
the more general form. In SI units, the equation states for
total current:

∇× B = µ0J

and for free current

∇×H = Jf

where ∇× is the curl operator.

3.2 Note on free current versus
bound current

The electric current that arises in the simplest textbook
situations would be classified as “free current”—for ex-
ample, the current that passes through a wire or battery.
In contrast, “bound current” arises in the context of bulk
materials that can be magnetized and/or polarized. (All
materials can to some extent.)
When a material is magnetized (for example, by placing it
in an external magnetic field), the electrons remain bound
to their respective atoms, but behave as if they were orbit-
ing the nucleus in a particular direction, creating a micro-
scopic current. When the currents from all these atoms
are put together, they create the same effect as a macro-
scopic current, circulating perpetually around the magne-
tized object. This magnetization current JM is one con-
tribution to “bound current”.
The other source of bound current is bound charge. When
an electric field is applied, the positive and negative bound
charges can separate over atomic distances in polarizable
materials, and when the bound charges move, the po-
larization changes, creating another contribution to the
“bound current”, the polarization current JP.
The total current density J due to free and bound charges
is then:

J = Jf + JM + JP
with J⛵ the “free” or “conduction” current density.
All current is fundamentally the same, microscopically.
Nevertheless, there are often practical reasons for want-
ing to treat bound current differently from free current.
For example, the bound current usually originates over
atomic dimensions, and one may wish to take advantage
of a simpler theory intended for larger dimensions. The
result is that the more microscopic Ampère’s law, ex-
pressed in terms of B and the microscopic current (which
includes free, magnetization and polarization currents), is
sometimes put into the equivalent form below in terms
of H and the free current only. For a detailed definition
of free current and bound current, and the proof that the
two formulations are equivalent, see the "proof" section
below.

3.3 Shortcomings of the original
formulation of Ampère’s cir-
cuital law

There are two important issues regarding Ampère’s law
that require closer scrutiny. First, there is an issue re-
garding the continuity equation for electrical charge. In
vector calculus, the identity for the divergence of a curl
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states that a vector field’s curl divergence must always be
zero. Hence

∇ · (∇× B) = 0

and so the original Ampère’s law implies that

∇ · J = 0.

But in general

∇ · J = −∂ρ

∂t

which is non-zero for a time-varying charge density. An
example occurs in a capacitor circuit where time-varying
charge densities exist on the plates.[4][5][6][7][8]

Second, there is an issue regarding the propagation of
electromagnetic waves. For example, in free space, where

J = 0,

Ampère’s law implies that

∇× B = 0

but instead

∇× B =
1

c2
∂E
∂t

.

To treat these situations, the contribution of displacement
current must be added to the current term in Ampère’s
law.
James Clerk Maxwell conceived of displacement current
as a polarization current in the dielectric vortex sea, which
he used to model the magnetic field hydrodynamically
and mechanically.[9] He added this displacement current
to Ampère’s circuital law at equation (112) in his 1861
paper On Physical Lines of Force.[10]

3.3.1 Displacement current

Main article: Displacement current

In free space, the displacement current is related to the
time rate of change of electric field.
In a dielectric the above contribution to displacement cur-
rent is present too, but a major contribution to the dis-
placement current is related to the polarization of the
individual molecules of the dielectric material. Even

though charges cannot flow freely in a dielectric, the
charges in molecules can move a little under the influence
of an electric field. The positive and negative charges
in molecules separate under the applied field, causing
an increase in the state of polarization, expressed as the
polarization density P. A changing state of polarization is
equivalent to a current.
Both contributions to the displacement current are com-
bined by defining the displacement current as:[4]

JD =
∂

∂t
D(r, t) ,

where the electric displacement field is defined as:

D = ε0E+ P = ε0εrE ,

where ε0 is the electric constant, εᵣ the relative static per-
mittivity, and P is the polarization density. Substituting
this form for D in the expression for displacement cur-
rent, it has two components:

JD = ε0
∂E
∂t

+
∂P
∂t

.

The first term on the right hand side is present every-
where, even in a vacuum. It doesn't involve any actual
movement of charge, but it nevertheless has an associ-
ated magnetic field, as if it were an actual current. Some
authors apply the name displacement current to only this
contribution.[11]

The second term on the right hand side is the displace-
ment current as originally conceived by Maxwell, associ-
ated with the polarization of the individual molecules of
the dielectric material.
Maxwell’s original explanation for displacement current
focused upon the situation that occurs in dielectric me-
dia. In the modern post-aether era, the concept has
been extended to apply to situations with no material
media present, for example, to the vacuum between the
plates of a charging vacuum capacitor. The displace-
ment current is justified today because it serves several
requirements of an electromagnetic theory: correct pre-
diction of magnetic fields in regions where no free current
flows; prediction of wave propagation of electromagnetic
fields; and conservation of electric charge in cases where
charge density is time-varying. For greater discussion see
Displacement current.

3.4 Extending the original law: the
Maxwell–Ampère equation

Next Ampère’s equation is extended by including the po-
larization current, thereby remedying the limited applica-
bility of the original Ampère’s circuital law.
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Treating free charges separately from bound charges,
Ampère’s equation including Maxwell’s correction in
terms of the H-field is (the H-field is used because it in-
cludes the magnetization currents, so JM does not appear
explicitly, see H-field and also Note):[12]

∮
C

H · dℓ =

∫∫
S

(
Jf +

∂

∂t
D
)
· dS

(integral form), where H is the magnetic H field (also
called “auxiliary magnetic field”, “magnetic field inten-
sity”, or just “magnetic field”), D is the electric displace-
ment field, and J⛵ is the enclosed conduction current or
free current density. In differential form,

∇×H = Jf +
∂

∂t
D .

On the other hand, treating all charges on the same
footing (disregarding whether they are bound or free
charges), the generalized Ampère’s equation, also called
the Maxwell–Ampère equation, is in integral form (see
the "proof" section below):

In differential form,

In both forms J includes magnetization current density[13]
as well as conduction and polarization current densi-
ties. That is, the current density on the right side of the
Ampère–Maxwell equation is:

Jf + JD + JM = Jf + JP + JM + ε0
∂E
∂t

= J+ ε0
∂E
∂t

,

where current density JD is the displacement current, and
J is the current density contribution actually due to move-
ment of charges, both free and bound. Because∇ ·D = ρ,
the charge continuity issue with Ampère’s original formu-
lation is no longer a problem.[14] Because of the term in
ε0∂E / ∂t, wave propagation in free space now is possible.
With the addition of the displacement current, Maxwell
was able to hypothesize (correctly) that light was a form
of electromagnetic wave. See electromagnetic wave
equation for a discussion of this important discovery.

3.4.1 Proof of equivalence

3.5 Ampère’s law in cgs units

In cgs units, the integral form of the equation, including
Maxwell’s correction, reads

∮
C

B · dℓ =
1

c

∫∫
S

(
4πJ+ ∂E

∂t

)
· dS

where c is the speed of light.
The differential form of the equation (again, including
Maxwell’s correction) is

∇× B =
1

c

(
4πJ+ ∂E

∂t

)
.

3.6 See also
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Chapter 4

Divergence theorem

“Gauss’s theorem” redirects here. For Gauss’s theorem
concerning the electric field, see Gauss’s law.
“Ostrogradsky theorem” redirects here. For Ostrograd-
sky’s theorem concerning the linear instability of the
Hamiltonian associated with a Lagrangian dependent on
higher time derivatives than the first, see Ostrogradsky
instability.

In vector calculus, the divergence theorem, also known
asGauss’s theorem orOstrogradsky’s theorem,[1][2] is
a result that relates the flow (that is, flux) of a vector field
through a surface to the behavior of the vector field inside
the surface.
More precisely, the divergence theorem states that the
outward flux of a vector field through a closed surface
is equal to the volume integral of the divergence over the
region inside the surface. Intuitively, it states that the sum
of all sources minus the sum of all sinks gives the net flow
out of a region.
The divergence theorem is an important result for the
mathematics of engineering, in particular in electrostatics
and fluid dynamics.
In physics and engineering, the divergence theorem is
usually applied in three dimensions. However, it gener-
alizes to any number of dimensions. In one dimension, it
is equivalent to the fundamental theorem of calculus. In
two dimensions, it is equivalent to Green’s theorem.
The theorem is a special case of the more general Stokes’
theorem.[3]

4.1 Intuition

If a fluid is flowing in some area, then the rate at which
fluid flows out of a certain region within that area can be
calculated by adding up the sources inside the region and
subtracting the sinks. The fluid flow is represented by a
vector field, and the vector field’s divergence at a given
point describes the strength of the source or sink there.
So, integrating the field’s divergence over the interior of
the region should equal the integral of the vector field over
the region’s boundary. The divergence theorem says that

this is true.[4]

The divergence theorem is employed in any conservation
law which states that the volume total of all sinks and
sources, that is the volume integral of the divergence, is
equal to the net flow across the volume’s boundary.[5]

4.2 Mathematical statement

V

S
n

n
n

n

A region V bounded by the surface S = ∂V with the surface nor-
mal n

Suppose V is a subset of Rn (in the case of n = 3, V
represents a volume in 3D space) which is compact and
has a piecewise smooth boundary S (also indicated with
∂V = S ). If F is a continuously differentiable vector field
defined on a neighborhood of V, then we have:[6]

∫∫∫
V
(∇ · F) dV = S (F · n) dS.

The left side is a volume integral over the volume V,
the right side is the surface integral over the boundary
of the volume V. The closed manifold ∂V is quite gen-
erally the boundary of V oriented by outward-pointing
normals, and n is the outward pointing unit normal field
of the boundary ∂V. (dS may be used as a shorthand for
ndS.) The symbol within the two integrals stresses once
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The divergence theorem can be used to calculate a flux through
a closed surface that fully encloses a volume, like any of the sur-
faces on the left. It can not directly be used to calculate the flux
through surfaces with boundaries, like those on the right. (Sur-
faces are blue, boundaries are red.)

more that ∂V is a closed surface. In terms of the intuitive
description above, the left-hand side of the equation rep-
resents the total of the sources in the volume V, and the
right-hand side represents the total flow across the bound-
ary S.

4.2.1 Corollaries

By applying the divergence theorem in various contexts,
other useful identities can be derived (cf. vector identi-
ties).[6]

• Applying the divergence theorem to the product of
a scalar function g and a vector field F, the result is∫∫∫

V
[F · (∇g) + g (∇ · F)] dV =

S gF · dS.

A special case of this is F = ∇ f , in which case
the theorem is the basis for Green’s identities.

• Applying the divergence theorem to the cross-
product of two vector fields F × G, the result is∫∫∫

V
[G · (∇× F)− F · (∇×G)] dV =

S (F×G) · dS.

• Applying the divergence theorem to the product of
a scalar function, f , and a non-zero constant vector
c, the following theorem can be proven:[7]

∫∫∫
V
c · ∇f dV = S (cf) ·

dS−
∫∫∫

V
f(∇ · c) dV.

• Applying the divergence theorem to the cross-
product of a vector field F and a non-zero constant
vector c, the following theorem can be proven:[7]

∫∫∫
V
c·(∇×F) dV = S (F×

c) · dS.

4.3 Example

The vector field corresponding to the example shown. Note, vec-
tors may point into or out of the sphere.

Suppose we wish to evaluate

S F · n dS,

where S is the unit sphere defined by

S =
{
x, y, z ∈ R3 : x2 + y2 + z2 = 1

}
.

and F is the vector field

F = 2xi+ y2j+ z2k.
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The direct computation of this integral is quite difficult,
but we can simplify the derivation of the result using the
divergence theorem, because the divergence theorem says
that the integral is equal to:

∫∫∫
W

(∇·F) dV = 2

∫∫∫
W

(1+y+z) dV = 2

∫∫∫
W

dV+2

∫∫∫
W

y dV+2

∫∫∫
W

z dV.

where W is the unit ball:

W =
{
x, y, z ∈ R3 : x2 + y2 + z2 ≤ 1

}
.

Since the function y is positive in one hemisphere of W
and negative in the other, in an equal and opposite way,
its total integral over W is zero. The same is true for z:

∫∫∫
W

y dV =

∫∫∫
W

z dV = 0.

Therefore,

S F · n dS = 2
∫∫∫

W
dV = 8π

3 ,

because the unit ball W has volume 4π/3.

4.4 Applications

4.4.1 Differential form and integral form of
physical laws

As a result of the divergence theorem, a host of physi-
cal laws can be written in both a differential form (where
one quantity is the divergence of another) and an inte-
gral form (where the flux of one quantity through a closed
surface is equal to another quantity). Three examples are
Gauss’s law (in electrostatics), Gauss’s law formagnetism,
and Gauss’s law for gravity.

Continuity equations

Main article: continuity equation

Continuity equations offer more examples of laws with
both differential and integral forms, related to each
other by the divergence theorem. In fluid dynamics,
electromagnetism, quantum mechanics, relativity theory,
and a number of other fields, there are continuity equa-
tions that describe the conservation of mass, momen-
tum, energy, probability, or other quantities. Generically,
these equations state that the divergence of the flow of the
conserved quantity is equal to the distribution of sources

or sinks of that quantity. The divergence theorem states
that any such continuity equation can be written in a dif-
ferential form (in terms of a divergence) and an integral
form (in terms of a flux).[8]

4.4.2 Inverse-square laws

Any inverse-square law can instead be written in a Gauss’
law-type form (with a differential and integral form, as
described above). Two examples are Gauss’ law (in
electrostatics), which follows from the inverse-square
Coulomb’s law, and Gauss’ law for gravity, which follows
from the inverse-square Newton’s law of universal grav-
itation. The derivation of the Gauss’ law-type equation
from the inverse-square formulation (or vice versa) is ex-
actly the same in both cases; see either of those articles
for details.[8]

4.5 History

The theorem was first discovered by Lagrange in
1762,[9] then later independently rediscovered by Gauss
in 1813,[10] by Ostrogradsky, who also gave the first proof
of the general theorem, in 1826,[11] by Green in 1828,[12]
etc.[13] Subsequently, variations on the divergence theo-
rem are correctly called Ostrogradsky’s theorem, but also
commonly Gauss’s theorem, or Green’s theorem.

4.6 Examples

To verify the planar variant of the divergence theorem for
a region R:

R =
{
x, y ∈ R2 : x2 + y2 ≤ 1

}
,

and the vector field:

F(x, y) = 2yi+ 5xj.

The boundary of R is the unit circle, C, that can be rep-
resented parametrically by:

x = cos(s), y = sin(s)

such that 0 ≤ s ≤ 2π where s units is the length arc from
the point s = 0 to the point P on C. Then a vector equation
of C is

C(s) = cos(s)i+ sin(s)j.

At a point P on C:
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P = (cos(s), sin(s)) ⇒ F = 2 sin(s)i+ 5 cos(s)j.

Therefore,

∮
C

F · n ds =
∫ 2π

0

(2 sin(s)i+ 5 cos(s)j) · (cos(s)i+ sin(s)j) ds

=

∫ 2π

0

(2 sin(s) cos(s) + 5 sin(s) cos(s)) ds

= 7

∫ 2π

0

sin(s) cos(s) ds

= 0.

BecauseM = 2y, ∂M/∂x = 0, and because N = 5x, ∂N/∂y
= 0. Thus

∫∫
R

divF dA =

∫∫
R

(
∂M

∂x
+

∂N

∂y

)
dA = 0.

4.7 Generalizations

4.7.1 Multiple dimensions

One can use the general Stokes’ Theorem to equate the n-
dimensional volume integral of the divergence of a vector
field F over a region U to the (n − 1)-dimensional surface
integral of F over the boundary of U:

∫
U

∇ · F dVn =

∮
∂U

F · n dSn−1

This equation is also known as the Divergence theorem.
When n = 2, this is equivalent to Green’s theorem.
When n = 1, it reduces to the Fundamental theorem of
calculus.

4.7.2 Tensor fields

Main article: Tensor field

Writing the theorem in Einstein notation:

∫∫∫
V

∂Fi

∂xi
dV = S Fini dS

suggestively, replacing the vector field F with a rank-n
tensor field T, this can be generalized to:[14]

∫∫∫
V

∂Ti1i2···iq···in
∂xiq

dV = S

Ti1i2···iq···inniq dS.

where on each side, tensor contraction occurs for at least
one index. This form of the theorem is still in 3d, each
index takes values 1, 2, and 3. It can be generalized fur-
ther still to higher (or lower) dimensions (for example to
4d spacetime in general relativity[15]).

4.8 See also
• Stokes’ theorem

• Kelvin–Stokes theorem
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[1] or less correctly as Gauss' theorem (see history for rea-
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Chapter 5

Electric displacement field

In physics, the electric displacement field, denoted by
D, is a vector field that appears in Maxwell’s equations. It
accounts for the effects of free and bound charge within
materials. "D" stands for “displacement”, as in the re-
lated concept of displacement current in dielectrics. In
free space, the electric displacement field is equivalent to
flux density, a concept that lends understanding to Gauss’s
law. It has the SI units of coulomb per squared metre (C
m−2).

5.1 Definition

In a dielectric material the presence of an electric field E
causes the bound charges in the material (atomic nuclei
and their electrons) to slightly separate, inducing a local
electric dipole moment. The electric displacement field
D is defined as

D ≡ ε0E+ P,

where ε0 is the vacuum permittivity (also called permit-
tivity of free space), and P is the (macroscopic) density
of the permanent and induced electric dipole moments
in the material, called the polarization density. Separat-
ing the total volume charge density into free and bound
charges:

ρ = ρf + ρb

the density can be rewritten as a function of the polariza-
tion P:

ρ = ρf −∇ · P.

The polarization P is defined to be a vector field whose
divergence yields the density of bound charges ρ⛲ in the
material. The electric field satisfies the equation:

∇ · E =
1

ε0
ρ =

1

ε0
(ρf −∇ · P)

and hence

∇ · (ε0E+ P) = ρf

The displacement field therefore satisfies Gauss’s law in a
dielectric:

∇ · D = ρ− ρb = ρf

However, electrostatic forces on ions or electrons in the
material are still governed by the electric field E in the
material via the Lorentz Force. It should also be remem-
bered that D is not determined exclusively by the free
charge. Consider the relationship:

∇× D = ε0∇× E+∇× P,

which, by the fact that E has a curl of zero in electrostatic
situations, evaluates to:

∇× D = ∇× P

The effect of this equation can be seen in the case of an
object with a “frozen in” polarization like a bar electret,
the electric analogue to a bar magnet. There is no free
charge in such a material, but the inherent polarization
gives rise to an electric field. If the wayward student were
to assume that the D field were entirely determined by
the free charge, he or she would conclude that the electric
field were zero outside such a material, but this is patently
not true. The electric field can be properly determined
by using the above relation along with other boundary
conditions on the polarization density to yield the bound
charges, which will, in turn, yield the electric field.
In a linear, homogeneous, isotropic dielectric with instan-
taneous response to changes in the electric field, P de-
pends linearly on the electric field,

P = ε0χE,
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where the constant of proportionality χ is called the
electric susceptibility of the material. Thus

D = ε0(1 + χ)E = εE

where ε = ε0 εᵣ is the permittivity, and εᵣ = 1 + χ the
relative permittivity of the material.
In linear, homogeneous, isotropic media, ε is a constant.
However, in linear anisotropic media it is a tensor, and
in nonhomogeneous media it is a function of position in-
side the medium. It may also depend upon the electric
field (nonlinear materials) and have a time dependent re-
sponse. Explicit time dependence can arise if the ma-
terials are physically moving or changing in time (e.g.
reflections off a moving interface give rise to Doppler
shifts). A different form of time dependence can arise
in a time-invariant medium, in that there can be a time
delay between the imposition of the electric field and the
resulting polarization of the material. In this case, P is a
convolution of the impulse response susceptibility χ and
the electric field E. Such a convolution takes on a simpler
form in the frequency domain—by Fourier transform-
ing the relationship and applying the convolution theo-
rem, one obtains the following relation for a linear time-
invariant medium:

D(ω) = ε(ω)E(ω),

where ω is the frequency of the applied field. The con-
straint of causality leads to the Kramers–Kronig relations,
which place limitations upon the form of the frequency
dependence. The phenomenon of a frequency-dependent
permittivity is an example of material dispersion. In
fact, all physical materials have some material dispersion
because they cannot respond instantaneously to applied
fields, but for many problems (those concerned with a
narrow enough bandwidth) the frequency-dependence of
ε can be neglected.
At a boundary, (D1 − D2) · n̂ = D1,⊥ − D2,⊥ = σf ,
where σ⛵ is the free charge density and the unit normal n̂
points in the direction from medium 2 to medium 1.[1]

5.2 History

Recall that Gauss’s law was formulated by Carl Friedrich
Gauss in 1835, but was not published until 1867. This
places a lower limit on the year of the formulation and
use of D to not earlier than 1835. Again, considering the
law in its usual form using E vector rather than D vector,
it can be safely said thatD formalism was not used earlier
than 1860s.
The Electric Displacement field was first found to be used
in the year 1864 by James Clerk Maxwell, in his pa-
per A Dynamical Theory of the Electromagnetic Field.

Maxwell used calculus to exhibit Michael Faraday’s the-
ory, that light is an electromagnetic phenomenon. In
PART V. — THEORY OF CONDENSERS, Maxwell
introduced the term D in page 494, titled, Specific Ca-
pacity of Electric Induction (D), explained in a form dif-
ferent from the modern and familiar notations.
Confusion over the term “Maxwell’s equations” arises be-
cause it has been used for a set of eight equations that ap-
peared in Part III of Maxwell’s 1864 paper A Dynamical
Theory of the Electromagnetic Field, entitled “General
Equations of the Electromagnetic Field”, and this confu-
sion is compounded by the writing of six of those eight
equations as three separate equations (one for each of the
Cartesian axes), resulting in twenty equations and twenty
unknowns. (As noted above, this terminology is not com-
mon: Modern references to the term “Maxwell’s equa-
tions” refer to the Heaviside restatements.)
It was Oliver Heaviside who reformulated the compli-
cated Maxwell’s equations to the modern, elegant form
that we know today. But it wasn't until 1884 that Heav-
iside, concurrently with similar work by Willard Gibbs
and Heinrich Hertz, grouped them together into a distinct
set. This group of four equations was known variously
as the Hertz–Heaviside equations and theMaxwell–Hertz
equations, and are sometimes still known as theMaxwell–
Heaviside equations.
Hence, it was probably Heaviside who lent D the present
significance it now has.[2]

5.3 Example: Displacement field in
a capacitor

A parallel plate capacitor. Using an imaginary pillbox, it is possi-
ble to use Gauss’s law to explain the relationship between electric
displacement and free charge.

Consider an infinite parallel plate capacitor placed in
space (or in a medium) with no free charges present ex-
cept on the capacitor. In SI units, the charge density on
the plates is equal to the value of the D field between
the plates. This follows directly from Gauss’s law, by in-
tegrating over a small rectangular pillbox straddling one
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plate of the capacitor:

∮
A

D · dA = Qfree

On the sides of the pillbox, dA is perpendicular to the
field, so that part of the integral is zero, leaving, for the
space inside the capacitor where the fields of the two
plates add,

|D| = Qfree
A

where A is surface area of the top face of the small rect-
angular pillbox and Q⛵ᵣₑₑ / A is just the free surface charge
density on the positive plate. Outside the capacitor, the
fields of the two plates cancel each other and |E| = |D| =
0. If the space between the capacitor plates is filled with
a linear homogeneous isotropic dielectric with permittiv-
ity ε, the total electric field E between the plates will be
smaller than D by a factor of ε: |E| = Q⛵ᵣₑₑ / (εA).
If the distance d between the plates of a finite parallel
plate capacitor is much smaller than its lateral dimensions
we can approximate it using the infinite case and obtain
its capacitance as

C =
Qfree
V

≈ Qfree
|E|d =

A

d
ε,

where V is the potential difference sustained between the
two plates. The partial cancellation of fields in the dielec-
tric allows a larger amount of free charge to dwell on the
two plates of the capacitor per unit potential drop than
would be possible if the plates were separated by vacuum.

5.4 See also
• History ofMaxwell’s equations#The termMaxwell’s
equations

• Polarization density

• Electric susceptibility

• Magnetizing field

• Electric dipole moment

5.5 References
[1] David Griffiths. Introduction to Electrodynamics (3rd

1999 ed.).

[2] History of Maxwell’s equations#The term Maxwell’s
equations

• “electric displacement field” at PhysicsForums
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