Fourier Analysis Overview (0A)

- CTFS: Continuous Time Fourier Series
- CTFT: Continuous Time Fourier Transform
- DTFS: Discrete Time Fourier Series

- DFT: Discrete

 DTFT: Discrete Time Fourier Transform Fourier Transform Copyright (c) 2011 -2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

T_0 period and N_0 samples

5A Spectrum Representation

Periods and Resolutions T_0 , N_0 & ω_0 , $\hat{\omega}_0$

5A Spectrum Representation ω_s and ω_0

$$T_{s}=1 \cdot T_{s} \qquad T_{0}=N_{0} \cdot T_{s}$$

$$\left[(\omega_{0}, T_{0})\right]$$

$$\left[(\omega_{0}, T_{s})\right] \qquad \left[(\omega_{0}, T_{0})\right]$$

$$\left[(\omega_{0}, N_{0} \cdot T_{s})\right] \qquad \left[(\omega_{0}, N_{0} \cdot T_{s})\right]$$

$$\left[(\omega_{0}, N_{0})\right] \qquad \left[(\omega_{0}, N_{0})\right]$$

5A Spectrum Representation

 ω_{s} and ω_{0}

ω_{s} and ω_{0}

5A Spectrum Representation

Frequency and Digital Frequency

Continuous Time $x(t) = \cos(\omega_0 t)$

$$\omega_0 = \frac{2\pi}{T_0}$$

$$x[n] = x(nT_{s})$$

$$= \cos(n\omega_{0}T_{s})$$

$$= \cos(n\hat{\omega}_{0})$$

$$\hat{\omega}_{0} = \frac{2\pi}{N_{0}}$$

$$\hat{\omega} = \omega \cdot T_{s} = \frac{\omega}{f_{s}}$$

5A Spectrum Representation

Frequency and Digital Frequency

5A Spectrum Representation

Frequency and Digital Frequency

5A Spectrum Representation

10

CTFS Correlation Process

$$C_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_0 t} dt \qquad \Longleftrightarrow \qquad x(t) = \sum_{n=-\infty}^{+\infty} C_n e^{+jn\omega_0 t}$$

Fourier Analysis Overview (0A)

DTFS Correlation Process

$$\gamma_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\left(\frac{2\pi}{N}\right)kn} \quad \longleftrightarrow \quad x[n] = \sum_{k=-M}^{+M} \gamma_{k} e^{+j\left(\frac{2\pi}{N}\right)kn}$$

CTFS → CTFT

$$T_{0}(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{-j\omega_{0}kt} \cdot \left(\frac{T_{0}}{2\pi}\right) \cdot \left(\frac{2\pi}{T_{0}}\right)$$
$$= \sum_{k=-\infty}^{+\infty} C_{k} e^{+j\omega_{0}kt} \cdot \left(\frac{2\pi}{T_{0}}\right)$$
$$= \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} C_{k} T_{0} e^{+j\omega_{0}kt} \cdot \left(\frac{2\pi}{T_{0}}\right)$$
$$T_{0}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} C_{k} T_{0} e^{+j\omega_{0}kt} \cdot \omega_{0}$$

Fourier Analysis Overview (0A)

DTFS → DTFT

Fourier Analysis Overview (0A)

CTFS & DTFS Correlation Processes

DTFS and DFT – position of 1/N

Discrete Time Fourier Series DTFS

$$\gamma[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn} \iff x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+j(2\pi/N)kn}$$

Discrete Fourier <u>Transform</u> **DFT**

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn} \quad () \quad x[n] = \left[\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2\pi/N)kn}\right]$$

$$DTFS(x[n]) = \frac{1}{N} DFT(x[n])$$
$$\hat{\omega}_0 = \left(\frac{2\pi}{N}\right)$$
$$\gamma[n] = \frac{1}{N} X[n]$$

Fourier Analysis Overview (0A)

DTFS and DFT coefficients relationship

Discrete Time Fourier Series DTFS

$$\gamma[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn}$$

$$x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+j(2\pi/N)kn}$$

$$X[k] = N \cdot \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn} \qquad \longleftrightarrow \qquad x[n] = \sum_{k=0}^{N-1} \frac{1}{N} X[k] e^{+j(2\pi/N)kn}$$

Discrete Fourier <u>Transform</u> **DFT**

Converting DTFS and DFT Coefficients

$$DFT(x[n]) = N DTFS(x[n])$$
$$X[n] = N \gamma[n]$$

$$DTFS(x[n]) = \frac{1}{N}DFT(x[n])$$
$$\mathbf{y}[n] = \frac{1}{N}X[n]$$

Fourier Analysis Overview (0A)

Fourier Transform Types

Continuous Time Fourier Series

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad (\Rightarrow x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Discrete Time Fourier Series

$$\gamma[\mathbf{k}] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\mathbf{k}\hat{\omega}_0 \mathbf{n}} \qquad \Longleftrightarrow \qquad x[\mathbf{n}] = \sum_{k=0}^{N-1} \gamma[\mathbf{k}] e^{+jk\hat{\omega}_0 \mathbf{n}}$$

Continuous Time Fourier <u>Transform</u>

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad \Longleftrightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Discrete Time Fourier Transform

$$X(j\hat{\omega}) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j\hat{\omega}n} \qquad \longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\omega}) e^{+j\hat{\omega}n} d\hat{\omega}$$

5A Spectrum Representation

Frequency Resolution

Continuous Time Fourier Series

$$C_{\underline{k}} = \frac{1}{T} \int_{0}^{T} x(t) e^{-j\underline{k}\omega_{0}t} dt \qquad (\Rightarrow \qquad x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Frequency Resolution
$$\omega_0 = \left(\frac{2\pi}{T_0}\right)$$
 Signal Period T_0

Discrete Time Fourier Series

$$\gamma[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\hat{\omega}_0 n} \quad \longleftrightarrow \quad x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+jk\hat{\omega}_0 n}$$

Frequency Resolution $\hat{\omega}_0 = \left(\frac{2\pi}{N_0}\right)$ Sample Counts N_0

Frequency Variable Notations

Continuous Time Fourier Transform

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \quad \Longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

$$j \omega \rightarrow e^{j \omega} \rightarrow X(e^{j \omega})$$
 $j \omega$ always appears as $e^{j \omega}$

Discrete Time Fourier Transform

$$X(j\hat{\omega}) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j\hat{\omega}n} \quad \longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\omega}) e^{+j\hat{\omega}n} d\hat{\omega}$$

$$j\hat{\omega} \rightarrow e^{j\hat{\omega}} \rightarrow X(e^{j\hat{\omega}})$$
 $j\hat{\omega}$ always appears as $e^{j\hat{\omega}}$

СТ	x(t)	FS	$\frac{1}{T} \int_0^T$	dt	$e^{-j \mathbf{k} \omega_0 t}$	DF	C_k	AF	$\sum_{k=-\infty}^{+\infty}$	
DT	<i>x</i> [<i>n</i>]	FS	$\frac{1}{N}\sum_{n=0}^{N-1}$		$e^{-j\mathbf{k}\hat{\omega}_{0}\mathbf{n}}$	DF	$\gamma[k]$	PF	$\sum_{k=0}^{N-1}$	
СТ	x(t)	FT	$\int_{-\infty}^{+\infty} d$	lt	$e^{-j\omega t}$	CF	$X(j \omega)$	AF	$\frac{1}{2\pi} \int_{-\infty}^{+\infty}$	d ω
DT	<i>x</i> [<i>n</i>]	FT	$\sum_{n=-\infty}^{+\infty}$		$e^{-j\hat{\omega}n}$	CF	$X(j\hat{\omega})$	PF	$\frac{1}{2\pi}\int_{-\pi}^{+\pi}$	d ŵ

Continuous TimeFourier SeriesDiscrete TimeFourier Transform

Continuous Freq Discrete Freq Aperiodic Freq Periodic Freq

Fourier Analysis Overview (0A)

CT x(t) **PT** $\frac{1}{T} \int_0^T dt \ e^{-jk\omega_0 t}$ **DF** C_k AF \sum **DT** x[n] **PT** $\frac{1}{N} \sum_{n=0}^{N-1} e^{-jk\hat{\omega}_0 n}$ **DF** $\gamma[k]$ **PF** $\sum_{k=0}^{N-1} e^{-jk\hat{\omega}_0 n}$ **CT** x(t) **AT** $\int_{-\infty}^{+\infty} dt$ $e^{-j\omega t}$ **CF** $X(j\omega)$ **AF** $\frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega$ **DT** x[n] **AT** $\sum_{i=1}^{\infty}$ $e^{-j\hat{\omega}n}$ CF $X(j\hat{\omega})$ PF $\frac{1}{2\pi}\int_{-\pi}^{+\pi} d\hat{\omega}$ $n = -\infty$

Continuous TimeFourier SeriesDiscrete TimeFourier Transform

Continuous Freq Discrete Freq Aperiodic Freq Periodic Freq

Fourier Analysis Overview (0A)

Continuous TimeFourier SeriesDiscrete TimeFourier Transform

Continuous Freq Discrete Freq Aperiodic Freq Periodic Freq

Fourier Analysis Overview (0A)

24

CT $x(t)$			$AF \sum_{k=-\infty}^{+\infty}$	
DT x[n]			$PF \sum_{k=0}^{N-1}$	
CT $x(t)$			AF $\frac{1}{2\pi} \int_{-\infty}^{+\infty}$	d ω
DT x[n]			PF $\frac{1}{2\pi} \int_{-\pi}^{+\pi}$	d ŵ
C ontinuous Time D iscrete Time	Fourier Series Fourier Transform	Continuous Freq Discrete Freq	Aperiodic Freq Periodic Freq	

Fourier Analysis Overview (0A)

CT
$$x(t)$$
 PT $\frac{1}{T} \int_{0}^{T} dt$
DT $x[n]$ **PT** $\frac{1}{N} \sum_{n=0}^{N-1}$

$$\mathbf{PT} \quad \frac{1}{T} \int_0^T 1 \, dt = \frac{T}{T}$$

$$\mathbf{PT} \quad \frac{1}{N} \sum_{n=0}^{N-1} 1 = \frac{N}{N}$$

$$X(j\omega) \approx T \cdot C_{k} \qquad \mathsf{CF} \quad \left(\frac{1}{2\pi}\right) \cdot T \cdot \left(\frac{2\pi}{T}\right) \qquad \mathsf{CF} \quad X(j\omega) \quad \mathsf{AF} \quad \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega$$
$$X(j\hat{\omega}) \approx N \cdot \gamma_{k} \qquad \mathsf{CF} \quad \left(\frac{1}{2\pi}\right) \cdot N \cdot \left(\frac{2\pi}{N}\right) \qquad \mathsf{CF} \quad X(j\hat{\omega}) \quad \mathsf{PF} \quad \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\hat{\omega}$$

Continuous Time Fourier Series

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad \longleftrightarrow \qquad x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Aperiodic Discrete Frequency Spectrum

 $\sum_{k=-\infty}^{+\infty} C_k$

Periodic Continuous Time Signal

$$\frac{1}{T} \int_0^T dt$$
$$x(t)$$

B. DTFS

Discrete Time Fourier Series

$$\gamma[\mathbf{k}] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\mathbf{k}\hat{\omega}_0 n}$$

$$\implies x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+jk\hat{\omega}_0 n}$$

Periodic Discrete Frequency Spectrum

 $\sum_{k=0}^{N-1}$

 $\gamma[k]$

Periodic Discrete Time Signal

$$\frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

C. CTFT

Continuous Time Fourier <u>Transform</u>

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \quad \Longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Aperiodic Discrete Frequency Spectrum

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega$$
$$X(j\omega)$$

Aperiodic Continuous Time Signal

$$\int_{-\infty}^{+\infty} dt$$

D. DTFT

Discrete Time Fourier <u>Transform</u>

$$X(j\hat{\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\hat{\omega}n} \quad \longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\omega}) e^{+j\hat{\omega}n} d\hat{\omega}$$

$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} d\hat{\omega}$$
$$X(j\hat{\omega})$$

Aperiodic Discrete Time Signal

$$\sum_{n = -\infty}^{+\infty} x[n]$$

CTFS & CTFT

Continuous Time Fourier Series

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad \Longleftrightarrow \qquad x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Continuous Time Fourier Transform

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \quad \Longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Continuous Frequency

DTFS & DTFT

Discrete Time Fourier Series

$$\gamma[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\hat{\omega}_0 n} \qquad \Longleftrightarrow \qquad x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+jk\hat{\omega}_0 n}$$

Discrete Time Fourier Transform

$$X(j\hat{\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\hat{\omega}n} \quad \longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\omega}) e^{+j\hat{\omega}n} d\hat{\omega}$$

Continuous Frequency

CTFS & DTFS

Continuous Time Fourier Series

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad \longleftrightarrow \qquad x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Discrete Time Fourier Series
$$\gamma[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\hat{\omega}_{0}n} \qquad \longleftrightarrow \qquad x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+jk\hat{\omega}_{0}n}$$

CTFT & DTFT

Continuous Time Fourier <u>Transform</u>

$$X(j\hat{\omega}) = \int_{-\infty}^{+\infty} x(t) e^{-j\hat{\omega}t} dt \quad \Longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Discrete Time Fourier Transform
$$X(j\hat{\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\hat{\omega}n} \quad \Longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\omega}) e^{+j\hat{\omega}n} d\hat{\omega}$$

Fourier Analysis Methods

Normalized Discrete Frequency

Normalized Continuous Frequency

Types of Fourier Transforms

1. CTFS → CTFT

Overview (0A)

3. CTFS ← CTFT

Fourier Analysis Overview (0A)

5. CTFT \rightarrow DTFT

6. CTFS → DTFS

Fourier Analysis Overview (0A)

42

7. CTFT ← DTFT

Fourier Analysis Overview (0A)

8. CTFS ← DTFS

Fourier Analysis Overview (0A)

44

Fourier Analysis Overview (0A)

Fourier Analysis Overview (0A)

$9 \text{ CTFS} \rightarrow \text{DTFT}$

$10 \text{ CTFS} \leftarrow \text{DTFT}$

Fourier Analysis Overview (0A)

49

11. CTFT \rightarrow DTFS

12. CTFT ← DTFS

Overview (0A)

CTFS & DTFT

CTFT & DTFS

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings