
ARM Assembly

Young W. Lim

June 8, 2016



Copyright (c) 2011-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".



ARM Assembly Categories

Arithmetic
Data Transfer
Logical
Conditional Branch
Unconditional Branch



ARM Assembly Category Instructions

Arithmetic :
add, subtract
Data Transfer :
load/store (halfword / halfword / Byte) (signed),
swap, mov
Logical :
and, or, not,
logical shift (right/left)
Conditional Branch :
compare, branch on conditions
Unconditional Branch :
brach, branch and link



Arithmetic Instructions

add r1, r2, r3 ; r1 = r2 + r3

sub r1, r2, r3 ; r1 = r2 - r3



Data Transfer Instructions

ldr r1, [r2, #20] ; r1 = M[r2+20]

ldrh r1, [r2, #20] ; r1 = M[r2+20], halfword

ldrhs r1, [r2, #20] ; r1 = M[r2+20], halfword, signed

ldrb r1, [r2, #20] ; r1 = M[r2+20]

ldrbs r1, [r2, #20] ; r1 = r2 + r3

str r1, [r2, #20] ; M[r2+20] = r1

strh r1, [r2, #20] ; M[r2+20] = r1, halfword

swap r1, [r2, #20] ; r1 <-> M[r2+20]

mov r1, r2 ; r1 = r2



Logical Instructions

and r1, r2, r3 ; r1 = r2 & r3

orr r1, r2, r3 ; r1 = r2 | r3

mvn r1, r2 ; r1 = ~r2

lsl r1, r2, #10 ; r1 = r2 << 10

lsr r1, r2, #10 ; r1 = r2 >> 10



Conditional Branch Instructions

cmp r1, r2 ; flag set by r1-r2

beq 25 ; goto PC+8+(25*4) if Z set

eq, ne, lt, le, gt, ge, lo, ls, hi, hs, vs, vc, mi, pl



Unconditional Branch Instructions

b 25 ; goto PC+8+(25*4)

bl 25 ; r14=PC+4, goto PC+8+(25*4)



Summary 1

ADC ADD with Carry (Rd = Rn + Op2 + Carry)

ADD ADD (Rd = Rn + Op2)

AND AND (Rd = Rn & Op2)

B Branch (R15 = address)

BIC BIt Clear (Rd = Rn & ~Op2)

BL Branch and Link (R14 = R15, R15 = address)

BX Branch and Exchange (R15 = Rn, T bit = Rn[0])

CDP Coprocessor Data Processing

CMN Compare Negative (CPSR flags = Rn + Op2)

CMP Compare (CPSR flags = Rn - Op2)

EOR Exclusive OR (Rd = Rn ^ Op2)

LDC Load Coprocessor from memory

LDM Load Multiple Registers (Pop the stack)

LDR Load Register from memory (Rd = address)



Summary 2

MCR Move CPU reg to Coproc reg (cRn = Rn {<op>cRm}

MLA Multiply Accumulate (Rd = (Rm * Rs) + Rn)MOV Move register or constant (Rd = Op2)

MRC Move from Coproc reg to CPU reg (Rn = cRn {<op>cRm})

MRS Move PSR status/flags to register (Rn = PSR)

MSR Move register to PSR status/flags (PSR = Rm)

MUL Multiply (Rd = Rm * Rs)

MVN Move Negative Register (Rd = 0xFFFFFFFF ^ Op2)

ORR OR (Rd = rn | Op2)

RSB Reverse Subtract (Rd = Op2 - Rn)

RSC Reverse Subtract with Carry (Rd = Op2 - Rn -1 +Carry)

SBC Subtract with Carry (Rd = Rn - Op2 -1 +Carry)



Summary 3

STC Store Coproc reg to memory (address = cRn)

STM Store Multiple (Push the stack)

STR Store register to memory (<address> = Rd)

SUB Subtract (Rd = Rn - Op2)

SWI Software Interrupt (OS system call)

SWP Swap register with memory (Rd <-> [Rn])

TEQ Test bitwise equality (CPSR flags = Rn ^ Op2)

TST Test bits (CPSR flags = Rn & Op2)



Addressing Modes

Immediate/Register/Sacled Register Offset
Scaled Register Offset
Immediate Pre/Post-Indexed
Register Pre/Post-Indexed
Scaled Register Pre-Indexed
Immediate
Register
Scaled Register
PC-relative Addressing



Cond Field
EQ (EQaul)
NE (Not Equal)
HS (unsigned Higher or Same)
LO (unsigend LOwer)
MI (Minus, <0)
PL (PLus, >0)
VS (oVerflow Set, overflow)
VC (oVerflow Clear, no overflow)
HI (unsigned HIgher)
LS (unsinged Lower or Same)
GE (signed Greater than or Equal)
LT (signed Less Than)
GT (signed Greater Than)
LE (signed Less than or Equal)
AL (ALways)
NV (reserved)



Across Procedure Calls

Preserved
I Variable registers : r4-r11
I Stack pointer register : sp
I Link register : lr
I Stack above the stack pointer

Not preserved
I Argument registers : r0-r3
I Intra-procedure-call scratch register : r12
I Stack below the stack pointer



ABI Register Conventions

a1-a2 : 0-1, Argument / return result / scratch register, changing
a3-a4 : 2-3, Argument / scratch register, changing
v1-v8 : 4-11, Variables for local routine, preserved
ip: 12, Intra-procedure call scratch register, changing
sp, 13, Stack pointer, preserved
lr, 14, Link register (return address), preserved
pc, 15, Program counter, N.A



Reference

[1] D. Harris, Digital Design and Computer Architecture”, 2nd ed.
[2] D.A. Patterson & J.H. Hennessy, Computer Organization and Design
(ARM ed)


