
Day18 A

Young W. Lim

2017-12-06 Wed

Young W. Lim Day18 A 2017-12-06 Wed 1 / 12



Outline

1 Based on

2 Structures
Initializing Structures
Accessing Structures
Type Definition
Passing Structures to Functions
Bit Fields

Young W. Lim Day18 A 2017-12-06 Wed 2 / 12



Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day18 A 2017-12-06 Wed 3 / 12



Initializing Structures

initilialized using initializer lists
when fewer initializers, the members with no initializers
are initialized to zero or NULL

members of global structure variables
are intialized to zero or NULL
unless explicitly initialized

structure variables may be initialized
by a structure variable assignment of the same type
by individual member assignments

Young W. Lim Day18 A 2017-12-06 Wed 4 / 12



Accessing Members of Structures

the structure member operator (.)
accesses a structure member via the structure variable name

the structure pointer operator (->)
accesses a structure member via a pointer to the structure variable

struct aaa {
int a;
char b;

};

struct aaa A;
struct aaa *p = &A;

(*p).a // A.a
(*p).b // A.b

p->a
p->b

Young W. Lim Day18 A 2017-12-06 Wed 5 / 12



typedef

a mechanism for creating synonyms for previously defined types

to create shorter type names
to increase portability

names for structure types are often defined with typedef

often used to create synonyms for the basic data types

Young W. Lim Day18 A 2017-12-06 Wed 6 / 12



Using Structures with Functions

structure variable may be passed to functions
by passing individual structure members
by passing entire structure (passing by value, default)
by passing a pointer to a structure variable (passing by reference)

Young W. Lim Day18 A 2017-12-06 Wed 7 / 12



Passing Arrays of Structures

arrays of structures is passed to functions
by reference (default)

pass the array name by reference

Young W. Lim Day18 A 2017-12-06 Wed 8 / 12



Passing Structures of Arrays

structure of an array may be used
to pass the array by value

because structures are passed by values
so its member arrays are passed also by values

Young W. Lim Day18 A 2017-12-06 Wed 9 / 12



Bit Fields

can specify the number of bits
where an unsigned int or int member
of structure / union is stored

better memory utlization
by storing data in the minimum number of bits required

Young W. Lim Day18 A 2017-12-06 Wed 10 / 12



Bit Field Width

unsigned int / int member_name : integer_width
width ranges from 0 to the number of bits for int

#include <stdio.h>

struct aaa {
unsigned char a:9;
unsigned int b:7;

};

int main(void) {
struct aaa A;

printf("sizeof(A)= %ld \n", sizeof(A));
}

---
t.c:4:3: error: width of ‘a’ exceeds its type

unsigned char a:9;
^

Young W. Lim Day18 A 2017-12-06 Wed 11 / 12



Unnamed Bit Fields

unnamed bit field
for padding bits

unnamed bit field with a zero width
for the alignment of the next bit field
on a new storage unit boundary

Young W. Lim Day18 A 2017-12-06 Wed 12 / 12


	Based on
	Structures
	Initializing Structures
	Accessing Structures
	Type Definition
	Passing Structures to Functions
	Bit Fields


