
Day12 A

Young W. Lim

2017-10-24 Tue

Young W. Lim Day12 A 2017-10-24 Tue 1 / 17

Outline

1 Based on

2 Pointers (1) - Definitions
Pointer Variable Definitions and Initialization
Pointer Operators and Arithmetic
Pointer Variables and Function Arguemnts

Young W. Lim Day12 A 2017-10-24 Tue 2 / 17

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day12 A 2017-10-24 Tue 3 / 17

Pointer Variable Definitions

a pointer contains an address of another variable
that contains a value
pointers can be defined to point to objects of any type
int *p, char *q, float *r, . . .

int *p; p can contain an address of an integer value
char *q; q can contain an address of a character value
float *r; r can contain an address of a float value
double *s; s can contain an address of a double value

Young W. Lim Day12 A 2017-10-24 Tue 4 / 17

Indirection

a (ordinary) variable name directly references a value . . . a

a pointer variable name indirectly references a value *p

referencing a value through a pointer is called indirection . . . *p

int *p; *p refers to an integer value *p : an integer variable
char *q; *q refers to character value *q : a character variable
float *r; *r refers to a float value *r : a float variable
double *s; *s refers to a double value *s : a double variable

Young W. Lim Day12 A 2017-10-24 Tue 5 / 17

Pointer Variable Initialization

pointers should be initialized
either when they are defined (int *p = &a;)
or in an assignment statement (p = &a;)

pointers can be initialized with
NULL : the pointer points to nothing (q = NULL;)
a symbolic constant defined in <stddef.h>
0 : the same as NULL, but NULL is preferred (q = 0;)
the only integer that can be directly assigned to a pointer variable
other integer requires a type cast
address of other variable (p = &a;)

Young W. Lim Day12 A 2017-10-24 Tue 6 / 17

Pointer Variable Assignment Examples

#include <stdio.h>

int main(void) {
int i = 111;
int *p = &i;
unsigned long m;
int *q;

printf("sizeof(p) =%ld \n",
sizeof(p));

m = (unsigned long) p;

printf("m= %lx \n",m);

q = NULL;
q = 0;
q = (int *) m;

printf("*q = %d \n", *q);

}

sizeof(p) =8
m= 7ffd767176cc
*q = 111

Young W. Lim Day12 A 2017-10-24 Tue 7 / 17

Pointer Operators

& (address operator)
returns the address of its operand
its operand must be a variable (&a, &p)

* (indirection operator)
returns the value of the object (*p)
to which its operand points

%p (conversion specifier)

in the printf statement prints
a memory location address as a hexadecimal integer

Young W. Lim Day12 A 2017-10-24 Tue 8 / 17

Pointer Arithmetic

a limited set of arithmetic operations
++ (increment)
-- (decrement)
+=, + integer addition
-=, - integer subtraction

Young W. Lim Day12 A 2017-10-24 Tue 9 / 17

Pointer Arithmetic : p+3

int *p;

p + 3

the actual address of (p+3) :
changes by 3 times the size of the object integer (sizeof(int))
to which the pointer p refers

think (p+3) as the address of the element
that are after 3 more integer elements
from the current element to which p points

*p *(p+1) *(p+2) *(p+3)
4-byte 4-byte 4-byte 4-byte
integer integer integer integer

Young W. Lim Day12 A 2017-10-24 Tue 10 / 17

Pointer Arithmetic Examples (1)

char *p short *p int *p
initial p addr addr addr
p after ++p addr + 1*1 addr + 1*2 addr + 1*4
p after p+=2 addr + 2*1 addr + 2*2 addr + 2*4
p after – –p addr – 1*1 addr – 1*2 addr – 1*4
p after p–=2 addr – 2*1 addr – 2*2 addr – 2*4

the content of a pointer variable p is the address addr

Young W. Lim Day12 A 2017-10-24 Tue 11 / 17

Pointer Arithmetic Examples (2)

#include <stdio.h>

int main(void) {
char a=-1, *p=&a;
short b=-1, *q=&b;
int c=-1, *r=&c;

printf("-------------------\n");
printf("p = %p \n", p);
printf("p+1 = %p \n", p+1);
printf("p+2 = %p \n", p+2);

printf("-------------------\n");
printf("q = %p \n", q);
printf("q+1 = %p \n", q+1);
printf("q+2 = %p \n", q+2);

printf("-------------------\n");
printf("r = %p \n", r);
printf("r+1 = %p \n", r+1);
printf("r+2 = %p \n", r+2);

}

$ gcc -Wall pointer.c
$./a.out

p = 0x7ffdbc55bd89
p+1 = 0x7ffdbc55bd8a
p+2 = 0x7ffdbc55bd8b

q = 0x7ffdbc55bd8a
q+1 = 0x7ffdbc55bd8c
q+2 = 0x7ffdbc55bd8e

r = 0x7ffdbc55bd8c
r+1 = 0x7ffdbc55bd90
r+2 = 0x7ffdbc55bd94

Young W. Lim Day12 A 2017-10-24 Tue 12 / 17

Pointer Arithmetic Examples (3)

32-bit compilie
$ gcc -Wall -m32 pointer.c
$./a.out

p = 0xffd66289
p+1 = 0xffd6628a
p+2 = 0xffd6628b

q = 0xffd6628a
q+1 = 0xffd6628c
q+2 = 0xffd6628e

r = 0xffd6628c
r+1 = 0xffd66290
r+2 = 0xffd66294

default 64-bit compile
$ gcc -Wall pointer.c
$./a.out

p = 0x7ffdbc55bd89
p+1 = 0x7ffdbc55bd8a
p+2 = 0x7ffdbc55bd8b

q = 0x7ffdbc55bd8a
q+1 = 0x7ffdbc55bd8c
q+2 = 0x7ffdbc55bd8e

r = 0x7ffdbc55bd8c
r+1 = 0x7ffdbc55bd90
r+2 = 0x7ffdbc55bd94

Young W. Lim Day12 A 2017-10-24 Tue 13 / 17

Pointer Arithmetic Examples (4)

#include <stdio.h>

int main(void) {
char a=-1, *p=&a;
short b=-1, *q=&b;
int c=-1, *r=&c;

printf("-------------------\n");
printf("p = 0x%016lx \n", (unsigned long) p);
printf("p+1 = 0x%016lx \n", (unsigned long) p+1);
printf("p+2 = 0x%016lx \n", (unsigned long) p+2);

printf("-------------------\n");
printf("q = 0x%016lx \n", (unsigned long) q);
printf("q+1 = 0x%016lx \n", (unsigned long) q+1);
printf("q+2 = 0x%016lx \n", (unsigned long) q+2);

printf("-------------------\n");
printf("r = 0x%016lx \n", (unsigned long) r);
printf("r+1 = 0x%016lx \n", (unsigned long) r+1);
printf("r+2 = 0x%016lx \n", (unsigned long) r+2);

}
Young W. Lim Day12 A 2017-10-24 Tue 14 / 17

Pointer Arithmetic Examples (5)

$ gcc -Wall pointer.c
$./a.out

p = 0x00007ffdfc98e4e9
p+1 = 0x00007ffdfc98e4ea
p+2 = 0x00007ffdfc98e4eb

q = 0x00007ffdfc98e4ea
q+1 = 0x00007ffdfc98e4eb
q+2 = 0x00007ffdfc98e4ec

r = 0x00007ffdfc98e4ec
r+1 = 0x00007ffdfc98e4ed
r+2 = 0x00007ffdfc98e4ee

Young W. Lim Day12 A 2017-10-24 Tue 15 / 17

Simulating pass by reference

all arguments are passed by value in C
simulating pass by reference in C

using pointers and the indirection operator (int *p, *)

to pass a variable by reference
use & variable name
to pass the address of the variable (&a)

to receive the address arguement
define a pointer parameter variable (int *p)

to modify the value of the variable within a function
use * pointer parameter (*p=100;)

Young W. Lim Day12 A 2017-10-24 Tue 16 / 17

Passing Pointers and Arrays

the compile does not differentiate
a function receives a pointer
a function receives a single subscripted array, i.e. an 1-d array

the programmer must make sure
a function receives an array (a set of elements)
a function receives a single variable passed by reference

the compiler converts
int b[] into int *b
a single subscripted array parameter into a pointer parameter

Young W. Lim Day12 A 2017-10-24 Tue 17 / 17

	Based on
	Pointers (1) - Definitions
	Pointer Variable Definitions and Initialization
	Pointer Operators and Arithmetic
	Pointer Variables and Function Arguemnts

