
Young Won Lim
3/29/18

Algorithms – Overview (1A)

Young Won Lim
3/29/18

 Copyright (c) 2017 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

Algorithms – Overview (1A) 3 Young Won Lim
3/29/18

Informal Definitions of Algorithms

https://en.wikipedia.org/wiki/Algorithm

An informal definition could be
"a set of rules that precisely defines a sequence of operations."
which would include all computer programs,
including programs that do not perform numeric calculations.
Generally, a program is only an algorithm if it stops eventually.

A prototypical example of an algorithm is
the Euclidean algorithm to determine
the maximum common divisor of two integers;

Algorithms – Overview (1A) 4 Young Won Lim
3/29/18

Flow Chart – Euclid Algorithms

https://en.wikipedia.org/wiki/Algorithm

flow chart of an algorithm (Euclid's algorithm)
for calculating the greatest common divisor (gcd)

two numbers a and b in locations named A and B.

successive subtractions in two loops:

IF the test B ≥ A, THEN B ← B − A

Similarly, IF A > B, THEN A ← A − B.

terminates when (the contents of) B is 0,
yielding the g.c.d. in A.

(Algorithm derived from Scott 2009:13;
symbols and drawing style from Tausworthe 1977).

Algorithms – Overview (1A) 5 Young Won Lim
3/29/18

Euclid Algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm

Euclid's method for finding the greatest common
divisor (GCD) of two starting lengths BA and DC, both
defined to be multiples of a common "unit" length.

The length DC being shorter, it is used to "measure"
BA, but only once because remainder EA is less than
DC. EA now measures (twice) the shorter length DC,
with remainder FC shorter than EA. Then FC
measures (three times) length EA. Because there is
no remainder, the process ends with FC being the
GCD. On the right Nicomachus' example with
numbers 49 and 21 resulting in their GCD of 7
(derived from Heath 1908:300).

Algorithms – Overview (1A) 6 Young Won Lim
3/29/18

Best, Worst, Average Case Complexities

https://en.wikipedia.org/wiki/Algorithm

The best, worst and average case complexity refer to
three different ways of measuring the time complexity
(or any other complexity measure) of different inputs of the same size.

Since some inputs of the same size n may be faster to solve than others.

This complexity is only defined with respect to
a probability distribution over the inputs.

For instance, if all inputs of the same size
are assumed to be equally likely to appear,

the average case complexity can be defined
with respect to the uniform distribution over all inputs of size n.

Algorithms – Overview (1A) 7 Young Won Lim
3/29/18

Best, Worst, Average Case Complexities

https://en.wikipedia.org/wiki/Algorithm

 Best-case complexity:
the complexity of solving the problem for the best input of size n.

 Worst-case complexity:
the complexity of solving the problem for the worst input of size n.

 Average-case complexity:
the complexity of solving the problem on an average.

Algorithms – Overview (1A) 8 Young Won Lim
3/29/18

Upper and Lower Bounds

https://en.wikipedia.org/wiki/Algorithm

To classify the computation time
(or similar resources, such as space consumption),
one is interested in proving upper and lower bounds
on the minimum amount of time required
by the most efficient algorithm solving a given problem.

The complexity of an algorithm is usually taken to be
its worst-case complexity, unless specified otherwise.

Analyzing a particular algorithm falls under the field of analysis of algorithms.
To show an upper bound T(n) on the time complexity of a problem,
one needs to show only that there is a particular algorithm
with running time at most T(n).

However, proving lower bounds is much more difficult,
since lower bounds make a statement about
all possible algorithms that solve a given problem.

Algorithms – Overview (1A) 9 Young Won Lim
3/29/18

Upper and Lower Bounds

https://en.wikipedia.org/wiki/Algorithm

The phrase "all possible algorithms" includes
not just the algorithms known today,
but any algorithm that might be discovered in the future.

To show a lower bound of T(n) for a problem requires
showing that no algorithm can have time complexity lower than T(n).

Upper and lower bounds are usually stated using the big O notation,
which hides constant factors and smaller terms.

This makes the bounds independent of the specific details
of the computational model used.

For instance, if T(n) = 7n2 + 15n + 40,
in big O notation one would write T(n) = O(n2).

Algorithms – Overview (1A) 10 Young Won Lim
3/29/18

NP Problems

https://en.wikipedia.org/wiki/Algorithm

Diagram of complexity classes provided that P ≠ NP. The existence
of problems in NP outside both P and NP-complete in this case was
established by Ladner.[3]

Algorithms – Overview (1A) 11 Young Won Lim
3/29/18

Algorithm Analysis

https://en.wikipedia.org/wiki/Algorithm

Graphs of number of operations,
N vs input size n
for common complexities,
assuming a coefficient of 1

Algorithms – Overview (1A) 12 Young Won Lim
3/29/18

Big-O

https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Big_O_notation

Algorithms – Overview (1A) 13 Young Won Lim
3/29/18

Upper and Lower Bounds

https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Big_O_notation`

Algorithms – Overview (1A) 14 Young Won Lim
3/29/18

Big O Notation

Discrete Mathematics, Rosen

witness (C ,k)

f (x) ≤ C g(x) for x > k

f (x) is O(g(x))

Algorithms – Overview (1A) 15 Young Won Lim
3/29/18

Big O Notation Examples

Discrete Mathematics, Rosen

witness (C ,k)

f (x) ≤ C g(x) for x > k

f (x) is O(g(x))

x2+2 x+1 is O(x3)

1 < x 1 < x2 x < x2 x2+2 x+1 < x2+2 x2+ x2 = 4 x2

x2+2 x+1 < 4 x2

Algorithms – Overview (1A) 16 Young Won Lim
3/29/18

f(x) = x2 + 2x + 1, g(x) = x2

Algorithms – Overview (1A) 17 Young Won Lim
3/29/18

The same class function examples

x→2 x

f 1(2 x)→4 f 1(x)

f 2(2 x)→4 f 2(x)

f 3(2 x)→4 f 3(x)

Algorithms – Overview (1A) 18 Young Won Lim
3/29/18

Growth Examples (1)

3n 2n n4

n3

n3n42n
3n

3n 2n n4

n3

Algorithms – Overview (1A) 19 Young Won Lim
3/29/18

Growth Examples (2)

n3

n3n42n
3n

3n 2n n4

n3

(log2n)
3

Young Won Lim
3/29/18

References

[1] http://en.wikipedia.org/
[2]

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20

