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Informal Definitions of Algorithms

https://en.wikipedia.org/wiki/Algorithm

An informal definition could be 
"a set of rules that precisely defines a sequence of operations."
which would include all computer programs, 
including programs that do not perform numeric calculations. 
Generally, a program is only an algorithm if it stops eventually.

A prototypical example of an algorithm is 
the Euclidean algorithm to determine 
the maximum common divisor of two integers; 
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Flow Chart – Euclid Algorithms

https://en.wikipedia.org/wiki/Algorithm

flow chart of an algorithm (Euclid's algorithm)
for calculating the greatest common divisor (gcd)

two numbers a and b in locations named A and B. 

successive subtractions in two loops: 

IF the test B ≥ A,  THEN  B ← B − A 

Similarly, IF A > B, THEN A ← A − B. 

terminates when (the contents of) B is 0, 
yielding the g.c.d. in A. 

(Algorithm derived from Scott 2009:13; 
symbols and drawing style from Tausworthe 1977).
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Euclid Algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm

Euclid's method for finding the greatest common 
divisor (GCD) of two starting lengths BA and DC, both 
defined to be multiples of a common "unit" length.

The length DC being shorter, it is used to "measure" 
BA, but only once because remainder EA is less than 
DC. EA now measures (twice) the shorter length DC, 
with remainder FC shorter than EA. Then FC 
measures (three times) length EA. Because there is 
no remainder, the process ends with FC being the 
GCD. On the right Nicomachus' example with 
numbers 49 and 21 resulting in their GCD of 7 
(derived from Heath 1908:300).
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Best, Worst, Average Case Complexities

https://en.wikipedia.org/wiki/Algorithm

The best, worst and average case complexity refer to 
three different ways of measuring the time complexity 
(or any other complexity measure) of different inputs of the same size. 

Since some inputs of  the same size n may be faster to solve than others. 

This complexity is only defined with respect to 
a probability distribution over the inputs. 

For instance, if all inputs of the same size 
are assumed to be equally likely to appear, 

the average case complexity can be defined 
with respect to the uniform distribution over all inputs of size n.
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Best, Worst, Average Case Complexities

https://en.wikipedia.org/wiki/Algorithm

    Best-case complexity: 
the complexity of solving the problem for the best input of size n.

    Worst-case complexity: 
the complexity of solving the problem for the worst input of size n.

    Average-case complexity: 
the complexity of solving the problem on an average. 
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Upper and Lower Bounds 

https://en.wikipedia.org/wiki/Algorithm

To classify the computation time 
(or similar resources, such as space consumption), 
one is interested in proving upper and lower bounds 
on the minimum amount of time required 
by the most efficient algorithm solving a given problem. 

The complexity of an algorithm is usually taken to be 
its worst-case complexity, unless specified otherwise. 

Analyzing a particular algorithm falls under the field of analysis of algorithms. 
To show an upper bound T(n) on the time complexity of a problem, 
one needs to show only that there is a particular algorithm 
with running time at most T(n). 

However, proving lower bounds is much more difficult, 
since lower bounds make a statement about 
all possible algorithms that solve a given problem. 
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Upper and Lower Bounds 

https://en.wikipedia.org/wiki/Algorithm

The phrase "all possible algorithms" includes 
not just the algorithms known today, 
but any algorithm that might be discovered in the future. 

To show a lower bound of T(n) for a problem requires 
showing that no algorithm can have time complexity lower than T(n).

Upper and lower bounds are usually stated using the big O notation, 
which hides constant factors and smaller terms. 

This makes the bounds independent of the specific details 
of the computational model used. 

For instance, if T(n) = 7n2 + 15n + 40, 
in big O notation one would write T(n) = O(n2).
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NP Problems

https://en.wikipedia.org/wiki/Algorithm

Diagram of complexity classes provided that P ≠ NP. The existence 
of problems in NP outside both P and NP-complete in this case was 
established by Ladner.[3]
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Algorithm Analysis

https://en.wikipedia.org/wiki/Algorithm

Graphs of number of operations, 
N vs input size n 
for common complexities, 
assuming a coefficient of 1
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Big-O 

https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Big_O_notation
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Upper and Lower Bounds 

https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Big_O_notation`
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Big O Notation 

Discrete Mathematics, Rosen

witness (C ,k)

f (x ) ≤ C g(x ) for x > k

f (x ) is O(g(x ))
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Big O Notation Examples 

Discrete Mathematics, Rosen

witness (C ,k)

f (x ) ≤ C g(x ) for x > k

f (x ) is O(g(x ))

x2+2 x+1 is O(x3)

1 < x 1 < x2 x < x2 x2+2 x+1 < x2+2 x2+ x2 = 4 x2

x2+2 x+1 < 4 x2
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f(x) = x2 + 2x + 1, g(x) = x2 
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The same class function examples

x→2 x

f 1(2 x )→4 f 1(x )

f 2(2 x )→4 f 2(x )

f 3(2 x )→4 f 3(x)
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Growth Examples (1)

3n 2n n4
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Growth Examples (2)
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