
Young Won Lim
6/9/18

Binary Search Tree (3A)

Young Won Lim
6/9/18

 Copyright (c) 2015 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

Binary Search Tree (3A) 3 Young Won Lim
6/9/18

Binary Search Tree (1)

https://en.wikipedia.org/wiki/Binary_search_tree

Binary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key
(e.g., finding the phone number of a person by name).

Binary Search Tree (3A) 4 Young Won Lim
6/9/18

Binary Search Tree (2)

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use
the principle of binary search

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion)
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations
on hash tables.

Binary Search Tree (3A) 5 Young Won Lim
6/9/18

Binary Search Tree (3)

https://en.wikipedia.org/wiki/Binary_search_tree

when looking for a key in a tree
or looking for a place to insert a new key,
they traverse the tree from root to leaf,
making comparisons to keys stored in the nodes
deciding to continue in the left or right subtrees,
on the basis of the comparison.

Binary Search Tree (3A) 6 Young Won Lim
6/9/18

Node, Left Child, Right Child

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 7 Young Won Lim
6/9/18

Subtrees

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 8 Young Won Lim
6/9/18

Node, Left Subtree, Right Subtree

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

13

141

3

6a

4 7

1

10

13

14

6

4 7 13

14

Binary Search Tree (3A) 9 Young Won Lim
6/9/18

In-Order Traversal

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 10 Young Won Lim
6/9/18

Successor Examples (1)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

3-4 4-6 6-7 7-8

8-10 10-13 13-14 14-

Binary Search Tree (3A) 11 Young Won Lim
6/9/18

Successor Examples (2)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

Binary Search Tree (3A) 12 Young Won Lim
6/9/18

Successor Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

Binary Search Tree (3A) 13 Young Won Lim
6/9/18

Successor Cases

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

If the right child exists,
then the minimum
in the right subtree
– the leftmost node

the parent of the farthest
node that can be reached
by following only right
edges backward.

Binary Search Tree (3A) 14 Young Won Lim
6/9/18

Predecessor Examples (1)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

1-3 3-4 4-6 6-7

7-8 8-10 10-13 13-14

Binary Search Tree (3A) 15 Young Won Lim
6/9/18

Predecessor Examples (2)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

Binary Search Tree (3A) 16 Young Won Lim
6/9/18

Predecessor Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

Binary Search Tree (3A) 17 Young Won Lim
6/9/18

Predecessor Cases

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

If the left child exists, then
the maximum
in the left subtree
– the rightmost node

the parent of the farthest
node that can be reached
by following only left
edges backward.

Binary Search Tree (3A) 18 Young Won Lim
6/9/18

Different BST’s with the same data

6

3

41

8

107

13

14 1

6

74

13

1410

3

8

4

3

1

6

14

7

10

8 13

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 19 Young Won Lim
6/9/18

Unbalanced BSTs

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

4

6

7

8

10

13

14

13

14

10

8

7

6

4

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 20 Young Won Lim
6/9/18

Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 21 Young Won Lim
6/9/18

Insertion

https://en.wikipedia.org/wiki/Binary_search_tree

Insertion begins as a search would begin;

if the key is not equal to that of the root,
we search the left or right subtrees as before.

at an leaf node, add the new key-value pair
as its right or left child,
depending on the node's key.

first examine the root
and recursively insert the new node
to the left subtree if its key is less than that of the root,
or the right subtree if its key is greater than or equal to the root.

Binary Search Tree (3A) 22 Young Won Lim
6/9/18

Insertion Example (1)

8 8

3

8

3 10

8

3

a

10

1

8

3

6a

4

10

1

8

3

6a

4 7

10

1

8

3

6a

4 7

10

141

8

3

6a

4 7

10

13

141

insert(8) insert(3) insert(10) insert(1)

insert(4) insert(7) insert(14) insert(13)

8

3

6a

10

1

insert(6)

Insert(8→3→10→1→6→4→7→14→13)

Binary Search Tree (3A) 23 Young Won Lim
6/9/18

Insertion Example (2)

8 8

1

8

1 10

8

1 10

8

1

3

4

10

8

7

10

14

13

insert(8) insert(1) insert(10) insert(3)

insert(4) insert(7) insert(13) insert(14)

8

1

3

10

insert(6)

3

6

6

1

3

4

6

8

7

101

3

4

6

13

8

7

101

3

4

6

Insert(8→3→10→1→6→4→7→14→13)

Insert(8→1→10→3→6→4→7→13→14)

Binary Search Tree (3A) 24 Young Won Lim
6/9/18

Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children:
simply remove the node from the tree.

2. Deleting a node with one child:
remove the node and replace it with its child.

3. Deleting a node with two children:
call the node to be deleted D.
Do not delete D.
Instead, choose either its in-order predecessor node 3(a)
or its in-order successor node as replacement node E. 3(b)
Copy the user values of E to D
If E does not have a child

simply remove E from its previous parent G.
If E has a child, say F, it is a right child.

Replace E with F at E's parent.

Binary Search Tree (3A) 25 Young Won Lim
6/9/18

Deletion – Case 1

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children:
simply remove the node from the tree.

8

3

6a

4 7

10

13

141

8

3

6a

7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

7

10

141

delete(4)

delete(4)
delete(13)

Binary Search Tree (3A) 26 Young Won Lim
6/9/18

Deletion – Case 2

https://en.wikipedia.org/wiki/Binary_search_tree

2. Deleting a node with one child:
remove the node and replace it with its child.

8

3

6a

4 7

10

13

141

8

1

6

4 7

10

13

14

8

3

6a

4 7

10

13

141

8

1

6

4 7

14

13

delete(3)

delete(3)
delete(10)

Binary Search Tree (3A) 27 Young Won Lim
6/9/18

Deletion – Case 3 : using a successor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children:
call the node to be deleted D.
its in-order successor node as E. Copy E to D

8

3

6a

4 7

11

9 141

Leftmost
E has no child
simply remove E
from its parent G.

9

3

6a

4 7

11

141

8

3

6a

10

11

9 141

Leftmost
E has a child F
it is a right child
replace E with F
at E's parent.

9

3

6a

11

10 141

delete(8)

delete(8)

Binary Search Tree (3A) 28 Young Won Lim
6/9/18

Deletion – Case 3 : using a predecessor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children:
call the node to be deleted D.
its in-order predecessor node as E. Copy E to D

8

4

6a

1 3

11

9 142

Rightmost
E has no child
simply remove E
from its parent G.

Rightmost
E has a child F
it is a left child
replace E with F
at E's parent.

8

4

6a

1

11

9 142

5

6

4

a

1 3

11

9 142

6

4

5a

1

11

9 142

delete(8)

delete(8)

Binary Search Tree (3A) 29 Young Won Lim
6/9/18

Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

Deleting a node with two children from a binary search tree.
First the leftmost node in the right subtree,
the in-order successor E, is identified.
Its value is copied into the node D being deleted.
The in-order successor can then be easily deleted
because it has at most one child.
The same method works symmetrically
using the in-order predecessor C.

Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2]

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30

