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Binary Search Tree (1) 

https://en.wikipedia.org/wiki/Binary_search_tree

Binary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container: 
data structures that store "items" 
(such as numbers, names etc.) in memory. 

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key 
(e.g., finding the phone number of a person by name).
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Binary Search Tree (2) 

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use 
the principle of binary search

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion) 
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations 
on hash tables.
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Binary Search Tree (3) 

https://en.wikipedia.org/wiki/Binary_search_tree

when looking for a key in a tree 
or looking for a place to insert a new key, 
they traverse the tree from root to leaf, 
making comparisons to keys stored in the nodes
deciding to continue in the left or right subtrees, 
on the basis of the comparison. 



Binary Search Tree (3A) 6 Young Won Lim
6/9/18

Node, Left Child, Right Child

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Subtrees

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14
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Node, Left Subtree, Right Subtree

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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In-Order Traversal

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14
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Successor Examples (1) 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Successor Examples (2) 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Successor Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf
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Successor Cases 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

 

 

 

 

 

 

 

 

 

 

 

If the right child exists, 
then the minimum 
in the right subtree 
–  the leftmost node

the parent of the farthest 
node that can be reached 
by following only right 
edges backward.
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Predecessor Examples (1)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Predecessor Examples (2)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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Predecessor  Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf
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Predecessor Cases

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

 

 

 

 

 

 

 

 

 

 

 

 

If the left child exists, then 
the maximum 
in the left subtree 
–  the rightmost node

the parent of the farthest 
node that can be reached 
by following only left 
edges backward.
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Different BST’s with the same data
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Unbalanced BSTs
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Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Insertion 

https://en.wikipedia.org/wiki/Binary_search_tree

Insertion begins as a search would begin; 

if the key is not equal to that of the root,
we search the left or right subtrees as before. 

at an leaf node, add the new key-value pair 
as its right or left child, 
depending on the node's key. 

first examine the root 
and recursively insert the new node 
to the left subtree if its key is less than that of the root, 
or the right subtree if its key is greater than or equal to the root.
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Insertion Example (1) 
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Insertion Example (2) 
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Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children: 
simply remove the node from the tree.

2. Deleting a node with one child: 
remove the node and replace it with its child.

3. Deleting a node with two children: 
call the node to be deleted D. 
Do not delete D. 
Instead, choose either its in-order predecessor node 3(a) 
or its in-order successor node as replacement node E. 3(b)
Copy the user values of E to D
If E does not have a child 

simply remove E from its previous parent G. 
If E has a child, say F, it is a right child. 

Replace E with F at E's parent.
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Deletion – Case 1

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children: 
simply remove the node from the tree.
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Deletion – Case 2 

https://en.wikipedia.org/wiki/Binary_search_tree

2. Deleting a node with one child: 
remove the node and replace it with its child.
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Deletion – Case 3 : using a successor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children: 
call the node to be deleted D. 
its in-order successor node as E.  Copy E to D
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Deletion – Case 3 : using a predecessor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children: 
call the node to be deleted D. 
its in-order predecessor node as E.  Copy E to D
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Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

Deleting a node with two children from a binary search tree. 
First the leftmost node in the right subtree, 
the in-order successor E, is identified. 
Its value is copied into the node D being deleted. 
The in-order successor can then be easily deleted 
because it has at most one child. 
The same method works symmetrically 
using the in-order predecessor C.
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