
Young Won Lim
6/2/18

Planar Graph (7A)

Young Won Lim
6/2/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Planar Graph (7A) 3 Young Won Lim
6/2/18

Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the
plane, i.e., it can be drawn on the plane in such a way
that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a
mapping from every node to a point on a plane, and from
every edge to a plane curve on that plane,
such that the extreme points of each curve are the points
mapped from its end nodes, and all curves are disjoint
except on their extreme points.

Planar Graph (7A) 4 Young Won Lim
6/2/18

Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 5 Young Won Lim
6/2/18

Planar Representation

Discrete Mathematics, Rosen

K
4 Q

3

No crossing No crossing

K
4

Planar Q
3 Planar

Planar Graph (7A) 6 Young Won Lim
6/2/18

A planar bipartite graph

v
1

v
2

v
3

v
4

v
5

v
6

Bipartite graph
but not complete
bipartite graph
K

3,3

v
1

v
3

v
4

v
6

v
1

v
2

v
3

v
4

v
5

v
6

v
2

v
5

Planar Graph

Planar Graph (7A) 7 Young Won Lim
6/2/18

Non-planar Graph K
3,3

Discrete Mathematics, Rosen

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2v

4

v
5

R
2

R
1

v
1

v
2v

4

v
5

R
1v

3

R
21

R
22

no where v
6

Non-planar

Planar Graph (7A) 8 Young Won Lim
6/2/18

Non-planar graph examples – K
5

Non-planar Non-planar Non-planar

homeomorphicisomorphic

All these graphs are similar
in determining whether
they are planar or not

Planar Graph (7A) 9 Young Won Lim
6/2/18

All these graphs are similar
in determining whether
they are planar or not

Non-planar graph examples – K
3,3

homeomorphicisomorphic

Non-planar Non-planar Non-planar

Planar Graph (7A) 10 Young Won Lim
6/2/18

Non-planar graph examples – embedding K
3,3

Planar Non-planar

contains K
3,3

contains K
3,3

contains a
subdivision of K

3,3

non-planar
subgraph

non-planar
subgraph

non-planar
subgraph

Non-planar Non-planar

Planar Graph (7A) 11 Young Won Lim
6/2/18

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing

Planar Graph (7A) 12 Young Won Lim
6/2/18

Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G
1
 and G

2
 are homeomorphic

if there is a graph isomorphism
from some subdivision of G

1

to some subdivision of G
2

homeo (identity, sameness)

iso (equal)

Planar Graph (7A) 13 Young Won Lim
6/2/18

Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision

homeomorphic

isomorphic

Planar Graph (7A) 14 Young Won Lim
6/2/18

Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity.

Kuratowski's theorem states that

 a finite graph is planar if and only if
it contains no subgraph homeomorphic
to K

5
 (complete graph on five vertices) or

K
3,3

 (complete bipartite graph on six vertices,

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3

is called a Kuratowski subgraph.

Planar Graph (7A) 15 Young Won Lim
6/2/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if
it does not contain a subgraph
that is a subdivision of the complete graph K

5
 or

the complete bipartite graph K
3,3

(utility graph).

A subdivision of a graph results
from inserting vertices into edges
(changing an edge •——• to •—•—•)
zero or more times.

Planar Graph (7A) 16 Young Won Lim
6/2/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

homeomorphic

planar

no subgraph homeomorphic
to K

5
or K

3,3

Non-planar

subgraph homeomorphic
to K

5
 or K

3,3

Planar Graph (7A) 17 Young Won Lim
6/2/18

Homeomorphic to K
3,3

Young Won Lim
6/2/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/8/18

Tree Overview (1A)

Young Won Lim
6/8/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Tree Overview (1A) 3 Young Won Lim
6/8/18

Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

a tree is an undirected graph in which
any two vertices are connected
by exactly one path.

any acyclic connected graph is a tree.

A forest is a disjoint union of trees.

Tree Overview (1A) 4 Young Won Lim
6/8/18

 Tree Condition (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A tree is an undirected graph G

that satisfies any of the following equivalent conditions:

G is connected and has no cycles.

G is acyclic, and a simple cycle is formed if any edge is added to G.

G is connected, but is not connected if any single edge is removed from G.

G is connected and the 3-vertex complete graph K
3
 is not a minor of G.

Any two vertices in G can be connected by a unique simple path.

Tree Overview (1A) 5 Young Won Lim
6/8/18

 Tree Condition (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is acyclic, and a simple cycle is
formed if any edge is added to G.

G is connected, but is not connected
if any single edge is removed from G.

Tree Overview (1A) 6 Young Won Lim
6/8/18

 Tree Condition (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

1 2

3
4

5

6

p
1,2

1 2

3
4

5

6

p
1,3

1 2

3
4

5

6

p
1,4

1 2

3
4

5

6

p
1,5

1 2

3
4

5

6

p
1,6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

p2,4

1 2

3
4

5

6

p
2,5 p2,6p

2,3

Any two vertices in G
can be connected by a
unique simple path.

Tree Overview (1A) 7 Young Won Lim
6/8/18

 Tree Condition (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

p3,6
p

3,4 p
3,5

p
4,5 p

4,6 p
5,6

Any two vertices in G
can be connected by a
unique simple path.

Tree Overview (1A) 8 Young Won Lim
6/8/18

 Tree Condition (5)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

If G has finitely many vertices,
say n vertices, then the above statements
are also equivalent to any of the following conditions:

G is connected and has n − 1 edges.

G has no simple cycles and has n − 1 edges.

1 2

3
4

5

6

e
1

e
2

e
3

e4

e
5

e

1
e

2
e

3
en−1v

1
v

2
v

3
vn

4 5 6 7

2 3

1e
1

e2

e3 e4 e5 e6

Tree Overview (1A) 9 Young Won Lim
6/8/18

 Tree Condition (6)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is connected and the 3-vertex
complete graph K

3
is not a minor of G.

deleting edges
deleting vertices

contracting edges

Tree Overview (1A) 10 Young Won Lim
6/8/18

Graph Minor

https://en.wikipedia.org/wiki/Graph_minor

In graph theory, an undirected graph H
is called a minor of the graph G
if H can be formed from G
by deleting edges and vertices and
by contracting edges.

contracting an edge

deleting an edge

deleting a vertex

deleting an edge

Tree Overview (1A) 11 Young Won Lim
6/8/18

Tree Examples

https://en.wikipedia.org/wiki/Tree_(data_structure)

Tree Overview (1A) 12 Young Won Lim
6/8/18

Terminology used in trees (1)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Root

 The top node in a tree.

Child

 A node directly connected to another node when moving away from the Root.

Parent

 The converse notion of a child.

Siblings

 A group of nodes with the same parent.

Descendant

 A node reachable by repeated proceeding from parent to child.

Ancestor

 A node reachable by repeated proceeding from child to parent.

Tree Overview (1A) 13 Young Won Lim
6/8/18

Terminology used in trees (2)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Leaf (less commonly called External node)

 A node with no children.

Branch (Internal node)

 A node with at least one child.

Degree

 The number of subtrees of a node.

Edge

 The connection between one node and another.

Path

 A sequence of nodes and edges connecting a node with a descendant.

Tree Overview (1A) 14 Young Won Lim
6/8/18

Terminology used in trees (3)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Level

 The level of a node is defined

by 1 + (the number of connections between the node and the root).

Height of node

 The height of a node is the number of edges

 on the longest path between that node and a leaf.

Height of tree

 The height of a tree is the height of its root node.

Depth

 The depth of a node is the number of edges

 from the tree's root node to the node.

Forest

 A forest is a set of n ≥ 0 disjoint trees.

Some literatures have the
reversed definitions of
height and depth

Depth

Depth

Height

Tree Overview (1A) 15 Young Won Lim
6/8/18

Depth

https://en.wikipedia.org/wiki/Tree_(data_structure)

d=0

d=1

d=2a

d=3 d=3

d=1

d=2 d=2d=2

depth

level=1

level=2

level=3

level=4

Tree Overview (1A) 16 Young Won Lim
6/8/18

Height

https://en.wikipedia.org/wiki/Tree_(data_structure)

h=0

h=2

h=2a

h=0 h=0

d=1

h=0 h=0h=0

level=1

level=2

level=3

level=4

max(1, 2)

(1, 1)

(1, 1)

max(3, 2)

max height from a leaf

Tree Overview (1A) 17 Young Won Lim
6/8/18

Binary Tree

https://en.wikipedia.org/wiki/Binary_tree

a binary tree is a tree data structure in which
each node has at most two children,
(the left child, the right child)

A recursive definition using just set theory notions
is that a (non-empty) binary tree is a tuple (L, S, R),
where L and R are binary trees or the empty set and
S is a singleton set.

Some authors allow the binary tree
to be the empty set as well.

Tree Overview (1A) 18 Young Won Lim
6/8/18

Full Binary Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A rooted binary tree has a root node and
every node has at most two children.

A full binary tree is
(proper, plane binary tree)
a tree in which every node
has either 0 or 2 children.

Tree Overview (1A) 19 Young Won Lim
6/8/18

Perfect Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A perfect binary tree is a binary tree in which
all interior nodes have two children and
all leaves have the same depth or same level.

also called a complete binary tree

the same depth (level).

two children

Tree Overview (1A) 20 Young Won Lim
6/8/18

Complete Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

In a complete binary tree
every level, except possibly the last,
is completely filled,
and all nodes in the last level are
as far left as possible.

An alternative definition is a perfect tree
whose rightmost leaves (perhaps all)
have been removed.

Tree Overview (1A) 21 Young Won Lim
6/8/18

Complete Binary Trees and Linear Arrays

https://en.wikipedia.org/wiki/Tree_(graph_theory)

8 9 10 11

4 5 6 7

2 3

11

2

3

4

5

6

7

8

9

10

11

contiguous
no blanks

→ complete

2⋅i

2⋅i + 1

Left child

Right child

A complete binary tree can
be efficiently represented
using an array.

Tree Overview (1A) 22 Young Won Lim
6/8/18

Different use of compute binary trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Some authors use the term complete
to refer instead to a perfect binary tree
as defined above,
in which case they call this type of tree
an almost complete binary tree or
nearly complete binary tree.

complete

perfect

nearly complete

complete

Tree Overview (1A) 23 Young Won Lim
6/8/18

Properties of Binary Trees (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A complete binary tree
can have between 1 and 2m-1 nodes
at the last level m.

Level l=1

Level l=2

Level l=3

Level l=4

20

21

22

23

depth d=0

depth d=1

depth d=2

depth d=3

Tree Overview (1A) 24 Young Won Lim
6/8/18

Properties of Binary Trees (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of nodes n in a full binary tree, is
at least n = 2d + 1 and
at most n = 2d+1 − 1,
where d is the detph of the tree.

A tree consisting of only a root node
has a depth of 0.

d=0

d=1

d=2

d=3

Tree Overview (1A) 25 Young Won Lim
6/8/18

Properties of Binary Trees (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

20

21-1

22-1

23-1

21

22

23

d=0

d=1

d=2

d=3

l=1

l=1

l=2

l=1

l=2

l=3

l=1

l=2

l=3

l=4

2d

2d-1

2d-1

2d-1

2d

2d

2d

2d+1–1

2d+1–1

2d+1–1

2d+1–1

Tree Overview (1A) 26 Young Won Lim
6/8/18

Properties of Binary Trees (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of leaf nodes is m
in a perfect binary tree,
is m=(n+1)/2

because the number of non-leaf
(internal) nodes is m–1

This means that a perfect binary tree
with m leaves has
n = 2m–1 nodes.

20

21-1

22-1

23-1

21

22

23

m

m-1

m-1

m-1

m

m

m

Young Won Lim
6/8/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/6/18

Tree Traversal (1A)

Young Won Lim
6/6/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Tree Traversal (2A) 3 Young Won Lim
6/6/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + *

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D –

Tree Traversal (2A) 4 Young Won Lim
6/6/18

Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + *

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D –

+

A B

+

A B

*

C +

B C

*

A /

C D

+

/

A B

D

A B

–

*

+ C

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm

Tree Traversal (2A) 5 Young Won Lim
6/6/18

Tree Traversal

https://en.wikipedia.org/wiki/Morphism

Depth First Search Breadth First Search

F

B

Da

C E

G

H

IA

Depth First Search
Pre-Order
In-order
Post-Order

Tree Traversal (2A) 6 Young Won Lim
6/6/18

Depth First Search on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

Depth First Search

Three Variations
Pre-Order, In-Order, Post-Order

pre-order post-order

in-order

+

*

–a

b c

/

d ea

Tree Traversal (2A) 7 Young Won Lim
6/6/18

Pre-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Tree_traversal

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (2A) 8 Young Won Lim
6/6/18

In-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Tree_traversal

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (2A) 9 Young Won Lim
6/6/18

Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Tree_traversal

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (2A) 10 Young Won Lim
6/6/18

Binary Tree Traversal

https://en.wikipedia.org/wiki/Tree_traversal

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

Tree Traversal (2A) 11 Young Won Lim
6/6/18

Pre-Order Traversal on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

pre-order function

 Check if the current node is empty / null.

 Display the data part of the root (or current node).

 Traverse the left subtree by recursively calling the pre-order function.

 Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order post-order

in-order

Tree Traversal (2A) 12 Young Won Lim
6/6/18

In-Order Traversal on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

in-order function

 Check if the current node is empty / null.

 Traverse the left subtree by recursively calling the in-order function.

 Display the data part of the root (or current node).

 Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order post-order

in-order

Tree Traversal (2A) 13 Young Won Lim
6/6/18

Post-Order Traversal on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

post-order function

 Check if the current node is empty / null.

 Traverse the left subtree by recursively calling the post-order function.

 Traverse the right subtree by recursively calling the post-order function.

 Display the data part of the root (or current node).

ACEDBHIGH

pre-order post-order

in-order

Tree Traversal (2A) 14 Young Won Lim
6/6/18

Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
 if (node = null)
 return
 inorder(node.left)
 visit(node)
 inorder(node.right)

preorder(node)
 if (node = null)
 return

visit(node)
 preorder(node.left)
 preorder(node.right)

postorder(node)
 if (node = null)
 return
 postorder(node.left)

postorder(node.right)
 visit(node)

1

2 3

2

1 3

3

1 2

Tree Traversal (2A) 15 Young Won Lim
6/6/18

Pre-Order recursive algorithm

https://en.wikipedia.org/wiki/Tree_traversal

preorder(node)
 if (node = null)
 return

visit(node)
 preorder(node.left)
 preorder(node.right)

F

B

Da

C E

G

H

IA

F

B

Da

C E

G

H

IA

B

Da

C E

A

aA D

C E

C E G

H

I H

I H

F B A D C E G I H

Tree Traversal (2A) 16 Young Won Lim
6/6/18

Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
 s ← empty stack

 while (not s.isEmpty() or
 node ≠ null)

 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 node ← s.pop()
 visit(node)

node ← node.right

iterativePreorder(node)
 if (node = null)

return
 s ← empty stack
 s.push(node)

while (not s.isEmpty())
 node ← s.pop()
 visit(node)
 // right child is pushed first
 // so that left is processed first
 if (node.right ≠ null)
 s.push(node.right)
 if (node.left ≠ null)
 s.push(node.left)

iterativePostorder(node)
 s ← empty stack
 lastNodeVisited ← null

 while (not s.isEmpty() or node ≠ null)
 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 peekNode ← s.peek()
 // if right child exists and traversing

// node from left child, then move right
 if (peekNode.right ≠ null and

lastNodeVisited ≠ peekNode.right)
 node ← peekNode.right
 else
 visit(peekNode)
 lastNodeVisited ← s.pop()

Tree Traversal (2A) 17 Young Won Lim
6/6/18

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Tree Traversal (2A) 18 Young Won Lim
6/6/18

Queue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
g

Tree Traversal (2A) 19 Young Won Lim
6/6/18

Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search) BFS (Breadth First Search)

Tree Traversal (2A) 20 Young Won Lim
6/6/18

DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search)A recursive implementation of DFS:

 procedure DFS(G,v):
 label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
 if vertex w is not labeled as discovered then
 recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

 procedure DFS-iterative(G,v):
 let S be a stack
 S.push(v)
 while S is not empty
 v = S.pop()
 if v is not labeled as discovered:
 label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
 S.push(w)

Tree Traversal (2A) 21 Young Won Lim
6/6/18

BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):

 create empty set S
 create empty queue Q

 add root to S
Q.enqueue(root)

 while Q is not empty:
 current = Q.dequeue()
 if current is the goal:
 return current
 for each node n that is adjacent to current:

if n is not in S:
 add n to S
 n.parent = current
 Q.enqueue(n)

Tree Traversal (2A) 22 Young Won Lim
6/6/18

Ternary Tree

Rosen

n o p

j k

e f

b c d

a

g h i

l m

three children

two children

one children

Tree Traversal (2A) 23 Young Won Lim
6/6/18

Ternary Tree Traversal

Rosen

pre-order post-order

in-order

pre-order post-order

in-order

Ternary treeBinary tree

Tree Traversal (2A) 24 Young Won Lim
6/6/18

Pre-Order Traversal on Ternary Trees

Rosen

n o p

j k

e f

b c d

a

g h i

l m

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i

Tree Traversal (2A) 25 Young Won Lim
6/6/18

In-Order Traversal on Ternary Trees

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i

Tree Traversal (2A) 26 Young Won Lim
6/6/18

Post-Order Traversal on Ternary Trees

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a

Tree Traversal (2A) 27 Young Won Lim
6/6/18

Ternary

Ternary

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
 Made up of three things; treble, triadic, triple, triplex
 Arranged in groups of three
 (mathematics) To the base three [quotations ▼]
 (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word
relating to the number eleven but there is one that relates to the number twelve:
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary

Young Won Lim
6/6/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/9/18

Binary Search Tree (3A)

Young Won Lim
6/9/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Binary Search Tree (3A) 3 Young Won Lim
6/9/18

Binary Search Tree (1)

https://en.wikipedia.org/wiki/Binary_search_tree

Binary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key
(e.g., finding the phone number of a person by name).

Binary Search Tree (3A) 4 Young Won Lim
6/9/18

Binary Search Tree (2)

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use
the principle of binary search

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion)
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations
on hash tables.

Binary Search Tree (3A) 5 Young Won Lim
6/9/18

Binary Search Tree (3)

https://en.wikipedia.org/wiki/Binary_search_tree

when looking for a key in a tree
or looking for a place to insert a new key,
they traverse the tree from root to leaf,
making comparisons to keys stored in the nodes
deciding to continue in the left or right subtrees,
on the basis of the comparison.

Binary Search Tree (3A) 6 Young Won Lim
6/9/18

Node, Left Child, Right Child

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 7 Young Won Lim
6/9/18

Subtrees

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 8 Young Won Lim
6/9/18

Node, Left Subtree, Right Subtree

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

13

141

3

6a

4 7

1

10

13

14

6

4 7 13

14

Binary Search Tree (3A) 9 Young Won Lim
6/9/18

In-Order Traversal

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 10 Young Won Lim
6/9/18

Successor Examples (1)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

3-4 4-6 6-7 7-8

8-10 10-13 13-14 14-

Binary Search Tree (3A) 11 Young Won Lim
6/9/18

Successor Examples (2)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

Binary Search Tree (3A) 12 Young Won Lim
6/9/18

Successor Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

Binary Search Tree (3A) 13 Young Won Lim
6/9/18

Successor Cases

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

If the right child exists,
then the minimum

in the right subtree

– the leftmost node

the parent of the farthest
node that can be reached
by following only right
edges backward.

Binary Search Tree (3A) 14 Young Won Lim
6/9/18

Predecessor Examples (1)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

1-3 3-4 4-6 6-7

7-8 8-10 10-13 13-14

Binary Search Tree (3A) 15 Young Won Lim
6/9/18

Predecessor Examples (2)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

Binary Search Tree (3A) 16 Young Won Lim
6/9/18

Predecessor Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

Binary Search Tree (3A) 17 Young Won Lim
6/9/18

Predecessor Cases

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

If the left child exists, then
the maximum

in the left subtree

– the rightmost node

the parent of the farthest
node that can be reached
by following only left
edges backward.

Binary Search Tree (3A) 18 Young Won Lim
6/9/18

Different BST’s with the same data

6

3

41

8

107

13

14 1

6

74

13

1410

3

8

4

3

1

6

14

7

10

8 13

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 19 Young Won Lim
6/9/18

Unbalanced BSTs

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

4

6

7

8

10

13

14

13

14

10

8

7

6

4

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 20 Young Won Lim
6/9/18

Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 21 Young Won Lim
6/9/18

Insertion

https://en.wikipedia.org/wiki/Binary_search_tree

Insertion begins as a search would begin;

if the key is not equal to that of the root,

we search the left or right subtrees as before.

at an leaf node, add the new key-value pair

as its right or left child,

depending on the node's key.

first examine the root

and recursively insert the new node

to the left subtree if its key is less than that of the root,

or the right subtree if its key is greater than or equal to the root.

Binary Search Tree (3A) 22 Young Won Lim
6/9/18

Insertion Example (1)

8 8

3

8

3 10

8

3

a

10

1

8

3

6a

4

10

1

8

3

6a

4 7

10

1

8

3

6a

4 7

10

141

8

3

6a

4 7

10

13

141

insert(8) insert(3) insert(10) insert(1)

insert(4) insert(7) insert(14) insert(13)

8

3

6a

10

1

insert(6)

Insert(8→3→10→1→6→4→7→14→13)

Binary Search Tree (3A) 23 Young Won Lim
6/9/18

Insertion Example (2)

8 8

1

8

1 10

8

1 10

8

1

3

4

10

8

7

10

14

13

insert(8) insert(1) insert(10) insert(3)

insert(4) insert(7) insert(13) insert(14)

8

1

3

10

insert(6)

3

6

6

1

3

4

6

8

7

101

3

4

6

13

8

7

101

3

4

6

Insert(8→3→10→1→6→4→7→14→13)

Insert(8→1→10→3→6→4→7→13→14)

Binary Search Tree (3A) 24 Young Won Lim
6/9/18

Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children:
simply remove the node from the tree.

2. Deleting a node with one child:
remove the node and replace it with its child.

3. Deleting a node with two children:
call the node to be deleted D.
Do not delete D.
Instead, choose either its in-order predecessor node 3(a)
or its in-order successor node as replacement node E. 3(b)
Copy the user values of E to D
If E does not have a child

simply remove E from its previous parent G.
If E has a child, say F, it is a right child.

Replace E with F at E's parent.

Binary Search Tree (3A) 25 Young Won Lim
6/9/18

Deletion – Case 1

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children:
simply remove the node from the tree.

8

3

6a

4 7

10

13

141

8

3

6a

7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

7

10

141

delete(4)

delete(4)

delete(13)

Binary Search Tree (3A) 26 Young Won Lim
6/9/18

Deletion – Case 2

https://en.wikipedia.org/wiki/Binary_search_tree

2. Deleting a node with one child:
remove the node and replace it with its child.

8

3

6a

4 7

10

13

141

8

1

6

4 7

10

13

14

8

3

6a

4 7

10

13

141

8

1

6

4 7

14

13

delete(3)

delete(3)

delete(10)

Binary Search Tree (3A) 27 Young Won Lim
6/9/18

Deletion – Case 3 : using a successor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children:
call the node to be deleted D.
its in-order successor node as E. Copy E to D

8

3

6a

4 7

11

9 141

Leftmost
E has no child
simply remove E
from its parent G.

9

3

6a

4 7

11

141

8

3

6a

10

11

9 141

Leftmost
E has a child F
it is a right child
replace E with F
at E's parent.

9

3

6a

11

10 141

delete(8)

delete(8)

Binary Search Tree (3A) 28 Young Won Lim
6/9/18

Deletion – Case 3 : using a predecessor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children:
call the node to be deleted D.
its in-order predecessor node as E. Copy E to D

8

4

6a

1 3

11

9 142

Rightmost
E has no child
simply remove E
from its parent G.

Rightmost
E has a child F
it is a left child
replace E with F
at E's parent.

8

4

6a

1

11

9 142

5

6

4

a

1 3

11

9 142

6

4

5a

1

11

9 142

delete(8)

delete(8)

Binary Search Tree (3A) 29 Young Won Lim
6/9/18

Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

Deleting a node with two children from a binary search tree.
First the leftmost node in the right subtree,
the in-order successor E, is identified.
Its value is copied into the node D being deleted.
The in-order successor can then be easily deleted
because it has at most one child.
The same method works symmetrically
using the in-order predecessor C.

Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/9/18

Finite State Machine (1A)

Young Won Lim
6/9/18

 Copyright (c) 2013 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

FSM Overview (1A) 3 Young Won Lim
6/9/18

FSM and Digital Logic Circuits

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

 Latch

 D FlipFlop

 Registers

 Timing

 Mealy machine

 Moore machine

 Traffic Lights Examples

FSM Overview (1A) 4 Young Won Lim
6/9/18

NOR-based SR Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=1

RESET Q=0

Q=1

S=1

R=0

SET Q=1

Q=0

1

0

0

1 1

0

0

1

FSM Overview (1A) 5 Young Won Lim
6/9/18

NOR-based SR Latch – HOLD

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=0

HOLD Q=old Q

Q=old Q

0

0

0

1 0

0

0

1→0

→1 →0

→1

FSM Overview (1A) 6 Young Won Lim
6/9/18

NOR-based SR Latch

R

S

Q

SET
begins

RST
begins

SET
begins

RST
begins

S=1
R=0

S=0
R=1

S=1
R=0

S=0
R=1

S=0
R=0

S=0
R=0

S=0
R=0

S=0
R=0

Hold
begins

Hold
begins

Hold
begins

Hold
begins

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 7 Young Won Lim
6/9/18

NOR-based SR Latch States

S=1

R=0

SET

Q=1

Q=0

S=0

R=1

RESETQ=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

S=1

R=0

S=0

R=1

S=0

R=0

S=0

R=1

S=0

R=0

S=1

R=0

Q=1

Q=0

Q=0

Q=1

S

R Q

Q

SETRESETHOLD NOR based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 8 Young Won Lim
6/9/18

0 1

SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SET SETHOLD, HOLD,

RESET

RESET S=1

R=0

SET

S=0

R=1

RESET

S=0

R=0

HOLD Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1

FSM Overview (1A) 9 Young Won Lim
6/9/18

NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

C

1

1

1

1

0

0

1

1

0

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

1

0

0

1

S

R

S

R

D=1

C=1

D=0

C=1

0

FSM Overview (1A) 10 Young Won Lim
6/9/18

NOR-based D Latch – HOLD

C

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

0

0

0

0

0

0

0

1

S

R

S

R

S=0

R=0

HOLD Q=old Q

Q=old Q

S=0

R=0

HOLD Q=old Q

Q=old Q

D=X

C=0

D=X

C=0

FSM Overview (1A) 11 Young Won Lim
6/9/18

NOR-based D Latch – Set / Reset / Hold

C

D

Q

transparent opaque transparent opaque

SET
begins

RST
begins

SET
begins

RST
begins

Hold
begins

Hold
begins

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 12 Young Won Lim
6/9/18

NOR-based D Latch – transparent / opaque

C

D

Q

transparent opaque transparent

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output

D→Q

C QQ

D QQ

transparent

C QQ

D QQ

opaque

1

0

C=1 C=0 C=1

FSM Overview (1A) 13 Young Won Lim
6/9/18

NOR-based D Latch States

Q=1

Q=0

Q=0

Q=1

C=1

D=1

C=1

D=0

C=0

D=X

C=1

D=0

C=0

D=X

C=1

D=1

C

D

C Q

Q

SETRESETHOLD NOR based D Latch

Q

Q

SETRESETHOLD

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 14 Young Won Lim
6/9/18

D Latch States

0 1

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

C=1

D=1

Trans
1

C=1

D=0

Trans
0

C=0

D=X

Opaque Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1

Opaque, Opaque,

Transparent 0 Transparent 1

Transparent 0

Transparent 1

FSM Overview (1A) 15 Young Won Lim
6/9/18

Master-Slave FlipFlops

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

C

Y

YD

C

Q

Q

FSM Overview (1A) 16 Young Won Lim
6/9/18

Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output
of the master is
transparently
reaches the
output of the
slave

this value is
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 17 Young Won Lim
6/9/18

Master Slave D FlipFlop – transparent / opaque

C

D

Q

transparent

opaque

transparent

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output

D→Q

QQ

D QQ

transparent

QQ

D QQ

opaque

else

falling
edge

falling
edge

opaque opaque

FSM Overview (1A) 18 Young Won Lim
6/9/18

Master-Slave D FlipFlop – Falling Edge

Master D Latch

Slave D Latch

D

C Q

Q D

C Q

Q

D

Q

Q

D

CK

Q

Q

D

CK

Q

D

CK

Q

Y

Y

CK

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 19 Young Won Lim
6/9/18

D Latch & D FlipFlop

Level Sensitive D Latch

Edge Sensitive D FlipFlop

D

Q

Q

CK

D

CK

Q

D

Q

Q

C

D

Q

CK=1 transparent
CK=0 opaque

CK=1→0 transparent
else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM Overview (1A) 20 Young Won Lim
6/9/18

D FlipFlop with Enable (1)

D

Q

Q
D

EN

Q

Q
CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

EN=1 Regular D Flip Flop
Sampling D input
@ posedge of CK

EN=0 Holding D Flip Flop
Sampling Q output
@ posedge of CK

D

Q

Q Q

Q

1

D

EN

CK

0

0

1

0

1

FSM Overview (1A) 21 Young Won Lim
6/9/18

D FlipFlop with Enable (2)

D

Q

Q

EN

D

EN

Q

CK

D

EN

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D

Q

Q Q

Q

D

EN

CK

0

1

FSM Overview (1A) 22 Young Won Lim
6/9/18

Registers

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

D Q

D Q

D Q

D Q

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

CLK

Register

In
p

u
ts

 t
o

 F
F

s

O
u

tp
u

ts
 o

f
F

F
s

FSM Overview (1A) 23 Young Won Lim
6/9/18

FF Timing (Ideal)

D
3:0

Q
3:0

Inputs to FFs

Outputs of FFs

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

FSM Overview (1A) 24 Young Won Lim
6/9/18

States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th

edge
(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State

FSM Overview (1A) 25 Young Won Lim
6/9/18

Sequence of States

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Find inputs to FFs

which will make outputs
in this sequence

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th

edge
(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State

FSM Overview (1A) 26 Young Won Lim
6/9/18

How to change current state

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current
State

Next
State

comb

Current
State

Next
State

input

gate
delay

FSM Overview (1A) 27 Young Won Lim
6/9/18

Finding FF Inputs

D Q

D Q

D Q

D Q

Comb
Next
State
Logic

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

FSM
inputs

During the tth clock edge period,

Compute the next state Q(t+1)
using the current state Q(t) and
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th,
the computed next state Q(t+1)
becomes the current state

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM Overview (1A) 28 Young Won Lim
6/9/18

Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

FSM
Inputs

Find the boolean functions
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0,
and external FSM inputs
for all possible cases.

Q(t)

Inputs

+

Q(t+1)

Current
State

Next
State

input

Q(t) Q(t+1)

FSM Overview (1A) 29 Young Won Lim
6/9/18

State Transition

Q(t+1)

Q(t+1)Q(t)

D
3:0

Q
3:0

FSM
Inputs

Q(t+1)

Q(t)

Inputs

Compute the next state
using the current state
and external inputs
in the current clock cycle

After the next clock edge,
the computed next state (FF Inputs)
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current
State

Next
State

comb

FSM Overview (1A) 30 Young Won Lim
6/9/18

Traffic Lights Example

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM Overview (1A) 31 Young Won Lim
6/9/18

FSM Inputs and Outputs

L
A

L
A

L
B

L
B

T
B

T
B

T
A

T
A

Traffic Lights - Outputs

L
A

L
B

Sensor - Inputs

T
B

T
A

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM Overview (1A) 32 Young Won Lim
6/9/18

Four States

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

T
B

T
A

=0

=0

T
A

=1

T
B =1

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

GR YR

RGRY

FSM Overview (1A) 33 Young Won Lim
6/9/18

00
GR

01
YR

11
RY

10
RG

T
A
=1

T
A
=0

T
B
=1

T
B
=0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

State Transition Diagrams and Tables

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

Y

G

R

R

R

R

Y

G

G:00
Y:01
R:10

FSM Overview (1A) 34 Young Won Lim
6/9/18

Next State Functions S
1
’ and S

2
’

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

S1 S0

S1 S0T B

S1 S0T B

S '1 = S1 S0 + S1S0

= S1 + S0

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

S1 S0T A

S1 S0T B

S '0 = S1S0T A
+ S1 S0T B

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

S '1 = S1 + S0

S '0 = S1S0T A
+ S1 S0T B

FSM Overview (1A) 35 Young Won Lim
6/9/18

Output Functions : L
A1

, L
A0

, L
B0

, L
B1

00
01
10

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

1 1

0 1

1 0

0 0

S
2
L

A1

1

1

0

0

S
1

L
A1=S1

1 0

0 0

1 1

0 0

S
2

L
A0

1

1

0

0

S
1

L
A 0=S1 S0

0

0

1

1

1

0

1

0

S
2

L
B1

1

1

0

0

S
1

1

0

1

0

S
2

1

1

0

0

S
1

1

0

0

0

L
B0

L
B1=S1 L

B0=S1 S0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

L
A1=S1

L
A 0=S1 S0

L
B1=S1

L
B0=S1 S0

FSM Overview (1A) 36 Young Won Lim
6/9/18

Moore FSM

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

L
A1

L
A0

L
B1

L
B0

S
1

S
0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X

NextSt

CurrSt

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Compute NextSt from
CurrSt, Ta, Tb

gate
delay

FSM Overview (1A) 37 Young Won Lim
6/9/18

Moore FSM Implementation

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

S '1 = S1 + S0

S '0 = S1S0T A
+ S1 S0T B

L
A1

L
A0

L
B1

L
B0

L
A1
=S1

L
A0
=S1S0

L
B1
=S1

L
B0
=S1S0

Next States

Outputs

S'0 = S1S0T A

+ S1S0TB

S '1 = S1 + S0

Inputs T
A

T
B

Current State S
1

S
0

S
1

S
0

Current State S
1

S
0

L
A1=S1

L
A 0=S1 S0

L
B1=S1

L
B0=S1 S0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM Overview (1A) 38 Young Won Lim
6/9/18

Next State Functions S
1
’ and S

2
’

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

S '1 = S1 + S0

S '0 = S1S0T A
+ S1 S0T B

Current
State

Next
State

FSM
Inputs

{00,01,10,11}

(T
A
T

B
)

× {00,01,10,11}→{00,01,10,11}

(S1 S0) (S1 S0)

FSM Overview (1A) 39 Young Won Lim
6/9/18

Cartesian Product

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

0

0

0

0

1

1

0 1 1

0 1 0

0 0 1

0 0 0

1 0 1

1 0 0

S
0

T
A

T
B

S'
1

0

0

0

0

0

0

S
1

0

0

1

1

0

0

S'
0

1

1

1

1

1

1

0 0 1

0 0 0

1 1 1

1 1 0

0 1 1

0 1 0

1

1

0

0

1

1

0

1

0

0

0

1

0

0

1 0 1

1 0 0

1

1

0

0

0

0

1 1 1

1 1 0

1

1

0

0

Current
State

Next
State

FSM
Inputs

{00,01,10,11}

(T
A
T

B
)

× {00,01,10,11}→{00,01,10,11}

(S1 S0) (S1 S0)

FSM Overview (1A) 40 Young Won Lim
6/9/18

Output Functions : L
A1

, L
A0

, L
B1

, L
B0

G : 00
Y : 01
R : 10

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

L
A1=S1

L
A 0=S1 S0

L
B1=S1

L
B0=S1 S0

Current
State

FSM
Output

{00,01,10,11} {0010,0110, 1000,1001}→

(L
A 1, LA 0, LB1, LB 0)(S1 S0)

FSM Overview (1A) 41 Young Won Lim
6/9/18

Moore FSM

1

clock

State
Register

Next State
Combinational

Logic

Output
Combinational

Logic
D Q D Q D Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM
Outputs

FSM
Inputs

FSM Overview (1A) 42 Young Won Lim
6/9/18

Mealy FSM

1

clock

State
Register

Next State
Combinational

Logic

Output
Combinational

Logic
D QD QD Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM
Outputs

FSM
Inputs

FSM Overview (1A) 43 Young Won Lim
6/9/18

State Diagram

https://en.wikipedia.org/wiki/Finite-state_machine

ST2 ST0 ST1

E: Entry Action

X: Exit Action

I: Input Action

state

output

active output

active output

active output mealy

moore

moore

time

FSM Overview (1A) 44 Young Won Lim
6/9/18

Acceptors

https://en.wikipedia.org/wiki/Finite-state_machine

Acceptor FSM: parsing the string "nice"

FSM Overview (1A) 45 Young Won Lim
6/9/18

Recognizers

https://en.wikipedia.org/wiki/Finite-state_machine

Representation of a finite-state machine;

determines whether a binary number has

an even number of 0s,

where S
1
 is an accepting state.

FSM Overview (1A) 46 Young Won Lim
6/9/18

Classifiers

https://en.wikipedia.org/wiki/Finite-state_machine

A classifier is a generalization of

a finite state machine that,

similar to an acceptor,

produces a single output on termination

but has more than two terminal states

FSM Overview (1A) 47 Young Won Lim
6/9/18

Transducers

https://en.wikipedia.org/wiki/Finite-state_machine

Transducers generate output based on a
given input and/or a state using actions.

They are used for control applications and in
the field of computational linguistics.

FSM Overview (1A) 48 Young Won Lim
6/9/18

Acceptors, Recognizers, Transducers

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

acceptors: either accept the input or not

recognizers: either recognize the input

transducers: generate output from given input

FSM Overview (1A) 49 Young Won Lim
6/9/18

General Transducers

https://en.wikipedia.org/wiki/Transducer

Transducers are used in electronic communications
systems to convert signals of various physical forms to
electronic signals, and vice versa. In this example, the
first transducer could be a microphone, and the second
transducer could be a speaker.

FSM Overview (1A) 50 Young Won Lim
6/9/18

Transducers : Moore and Mealy Machines

https://en.wikipedia.org/wiki/Finite-state_machine

Fig. 6 Transducer FSM: Moore
model example

Fig. 7 Transducer FSM: Mealy model example

There are two input actions (I:):

"start motor to close the door
if command_close arrives"

"start motor in the other direction to open the door
if command_open arrives".

FSM Overview (1A) 51 Young Won Lim
6/9/18

Moore machine example

https://en.wikipedia.org/wiki/Moore_machine

output does not depend on inputs

FSM Overview (1A) 52 Young Won Lim
6/9/18

Mealy machine

https://en.wikipedia.org/wiki/Mealy_machine

input / output

output does depend on inputs

FSM Overview (1A) 53 Young Won Lim
6/9/18

Mathematical Model – transducers (1)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A finite-state transducer is a sextuple (Σ, Γ, S, s
0
, δ, ω), where:

● Σ is the input alphabet (a finite non-empty set of symbols).
● Γ is the output alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.

● s
0
 is the initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S
● ω is the output function.

Moore machine : ω : S → Γ

Mealy machine : ω : S × Σ → Γ

(Σ, Γ, S, s
0
, δ, ω)

(I, O, S, f, g, σ)

FSM Overview (1A) 54 Young Won Lim
6/9/18

Mathematical Model – transducers (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

If the output function is a function of a state and input alphabet

(ω : S × Σ → Γ) that definition corresponds to the Mealy model,

and can be modelled as a Mealy machine.

If the output function depends only on a state (ω : S → Γ)

that definition corresponds to the Moore model,

and can be modelled as a Moore machine.

A finite-state machine with no output function at all is known as a
semiautomaton or transition system.

FSM Overview (1A) 55 Young Won Lim
6/9/18

Mathematical Models – acceptors

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A deterministic finite state machine or

acceptor deterministic finite state machine is

a quintuple (Σ, S, s
0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.

● s
0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S
● F is the set of final states, a (possibly empty) subset of S. output function ω

A set of accepted states

output set {0, 1}

FSM Overview (1A) 56 Young Won Lim
6/9/18

Finite State Tranducers and Acceptors

finite-state transducer (Σ, Γ, S, s
0
, δ, ω)

finite state acceptor (Σ, S, s
0
, δ, F)

limited finite state machine (Σ, S, δ)

Finite State
Automaton (FSA)

Finite State
Machine (FSM)

Σ is the input alphabet (a finite non-empty set of symbols).

S is a finite, non-empty set of states.

δ is the state-transition function: δ : S × Σ → S

s
0
 is the initial state, an element of S.

F is the set of final states, a (possibly empty) subset of S.

Γ is the output alphabet (a finite, non-empty set of symbols).

ω is the output function.

Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/9/18

Automata Theory (2A)

Young Won Lim
6/9/18

 Copyright (c) 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

FSA (2A) 3 Young Won Lim
6/9/18

Automata

https://en.wikipedia.org/wiki/Automata_theory

The word automata (the plural of automaton)

comes from the Greek word α τόματαὐ ,

which means "self-acting".

FSA (2A) 4 Young Won Lim
6/9/18

Automata Theory

https://en.wikipedia.org/wiki/Automata_theory

Automata theory is the study of
abstract machines and automata,
as well as the computational problems
that can be solved using them.

It is a theory in theoretical computer science
and discrete mathematics.

FSA (2A) 5 Young Won Lim
6/9/18

Automata Informal description (1) – Inputs

https://en.wikipedia.org/wiki/Automata_theory

An automaton runs

when it is given some sequence of inputs

in discrete (individual) time steps or steps.

An automaton processes one input

picked from a set of symbols or letters,

which is called an alphabet.

The symbols received by the automaton

as input at any step are

a finite sequence of symbols called words.

word

alphabet

1000100

{0,1}

FSA (2A) 6 Young Won Lim
6/9/18

Automata informal description (2) – States

https://en.wikipedia.org/wiki/Automata_theory

An automaton has a finite set of states.

At each moment during a run of the automaton,

the automaton is in one of its states.

When the automaton receives new input

it moves to another state (or transitions)

based on a function that takes

the current state and input symbol as parameters.

This function is called the transition function.

FSA (2A) 7 Young Won Lim
6/9/18

Automata informal description (3) – Stop

https://en.wikipedia.org/wiki/Automata_theory

The automaton

reads the symbols of the input word

one after another and

transitions from state to state

according to the transition function

until the word is read completely.

Once the input word has been read,

the automaton is said to have stopped.

The state at which the automaton stops

is called the final state.

word 1000100

FSA (2A) 8 Young Won Lim
6/9/18

Automata informal description (4) – Accept / Reject

https://en.wikipedia.org/wiki/Automata_theory

Depending on the final state,

it's said that the automaton

either accepts or rejects an input word.

There is a subset of states of the automaton,

which is defined as the set of accepting states.

If the final state is an accepting state,

then the automaton accepts the word.

Otherwise, the word is rejected.

word 1000100

FSA (2A) 9 Young Won Lim
6/9/18

Automata informal description (5) – Language

https://en.wikipedia.org/wiki/Automata_theory

The set of all the words accepted

by an automaton is called the

"language of that automaton".

Any subset of the language of an automaton is

a language recognized by that automaton.

FSA (2A) 10 Young Won Lim
6/9/18

Automata informal description (6) – Decision on inputs

https://en.wikipedia.org/wiki/Automata_theory

an automaton is a mathematical object

that takes a word as input

and decides whether to accept it or reject it.

Since all computational problems are

reducible into the accept/reject question on inputs,

(all problem instances can be represented

in a finite length of symbols),

automata theory plays a crucial role

in computational theory.

FSA (2A) 11 Young Won Lim
6/9/18

Automata Applications

https://en.wikipedia.org/wiki/Automata_theory

Automata theory is closely related to formal language theory.

An automaton is a finite representation of a formal language
that may be an infinite set.

Automata are often classified by the class of formal languages
they can recognize, typically illustrated by the Chomsky hierarchy,
which describes the relations between various languages and kinds of
formalized logic.

Automata play a major role in
theory of computation,
compiler construction,
artificial intelligence,
parsing and
formal verification.

FSA (2A) 12 Young Won Lim
6/9/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

● Combinational Logic

● Finite State Automaton (FSA)

● Pushdown Automaton (PDA)

● Turing Machine

FSA (2A) 13 Young Won Lim
6/9/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Automaton (FSA) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine Recursively Enumerable Language

Automaton Formal Languages

FSA (2A) 14 Young Won Lim
6/9/18

Finite State Automaton

https://en.wikipedia.org/wiki/Automata_theory

The figure at right illustrates a finite-state
machine, which belongs to a well-known type
of automaton.

This automaton consists of
states (represented in the figure by circles)
and transitions (represented by arrows).

As the automaton sees a symbol of input,
it makes a transition (or jump)
to another state, according to its transition
function, which takes the current state and
the recent symbol as its inputs.

FSA (2A) 15 Young Won Lim
6/9/18

Pushdown Automaton (1)

https://en.wikipedia.org/wiki/Automata_theory

a type of automaton that employs a stack.

The term "pushdown" refers to the fact that

the stack can be regarded as being "pushed down"

like a tray dispenser at a cafeteria,

since the operations never work on elements

other than the top element.

A stack automaton, by contrast, does allow

access to and operations on deeper elements.

FSA (2A) 16 Young Won Lim
6/9/18

Pushdown Automaton (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

a pushdown automaton (PDA) is
a type of automaton that employs a stack

FSA (2A) 17 Young Won Lim
6/9/18

Turing Machine (1)

https://en.wikipedia.org/wiki/Automata_theory

A Turing machine is

a mathematical model of computation

that defines an abstract machine,

which manipulates symbols on a strip of tape

according to a table of rules.

Despite the model's simplicity,

given any computer algorithm,

a Turing machine capable of simulating

that algorithm's logic can be constructed.

FSA (2A) 18 Young Won Lim
6/9/18

Turing Machine (2)

https://en.wikipedia.org/wiki/Turing_machine

FSA (2A) 19 Young Won Lim
6/9/18

1. Definition of Finite State Automata

https://en.wikipedia.org/wiki/Automata_theory

A deterministic finite automaton is represented formally

by a 5-tuple <Q, Σ, δ, q
0
, F>, where:

● Q is a finite set of states.

● Σ is a finite set of symbols, called the alphabet of the automaton.

● δ is the transition function, that is, δ: Q × Σ → Q.

● q
0
 is the start state, that is, the state of the automaton

 before any input has been processed, where q
0

 ∈ Q.

● F is a set of states of Q (i.e. F⊆Q) called accept states.

FSA (2A) 20 Young Won Lim
6/9/18

2. Deterministic Pushdown Automaton

https://en.wikipedia.org/wiki/Pushdown_automaton

A PDA is formally defined as a 7-tuple:

M = (Q, Σ, Γ, δ, q
0
, Z, F) where

● Q is a finite set of states
● Σ is a finite set which is called the input alphabet
● Γ is a finite set which is called the stack alphabet
● δ is a finite subset of Q×(Σ {ε})×∪ Γ×Q×Γ∗, the transition relation.

● q
0
 ∈ Q is the start state

● Z ∈ Γ is the initial stack symbol
● F ⊆ Q is the set of accepting states

FSA (2A) 21 Young Won Lim
6/9/18

3. Turing Machine

https://en.wikipedia.org/wiki/Turing_machine

Turing machine as a 7-tuple M = (Q, Γ, b, Σ, δ, q
0
, F) where

● Q is a finite, non-empty set of states;
● Γ is a finite, non-empty set of tape alphabet symbols;
● b ∈ Γ is the blank symbol
● Σ ⊆ Γ { b } is the set of ∖ input symbols in the initial tape

contents;

● q
0
 ∈ Q is the initial state;

● F ⊆ Q is the set of final states or accepting states.
● δ : (Q ∖ F) × Γ → Q × Γ × { L , R } is transition function,

where L is left shift, R is right shift.

The initial tape contents is said to be accepted by M if it eventually
halts in a state from F .

 ∖ set minus

FSA (2A) 22 Young Won Lim
6/9/18

FSA, PDA, Turing Machine

Turing machine (Q, Γ, b, Σ, δ, q
0
, F)

Deterministic Pushdown Automaton (Q, Σ, Γ, δ, q
0
, Z, F)

Deterministic Finite State Automaton (Q, Σ, δ, q
0
, F)

Σ is the input alphabet (a finite non-empty set of symbols).

Q is a finite, non-empty set of states.

δ is the state-transition function: δ : S × Σ → S

s
0
 is the initial state, an element of S.

F is the set of final states, a (possibly empty) subset of S.

Γ is a finite set which is called the stack alphabet

Z ∈ Γ is the initial stack symbol

Γ is a finite, non-empty set of tape alphabet symbols;

b ∈ Γ is the blank symbol

FSA (2A) 23 Young Won Lim
6/9/18

Deterministic Finite State Automaton (FSA)

FSA (2A) 24 Young Won Lim
6/9/18

Deterministic Finite Automaton Example (1)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The following example is of a DFA M, with a binary alphabet,

which requires that the input contains an even number of 0s.

M = (Q, Σ, δ, q0, F) where

 Q = {S1, S2},

 Σ = {0, 1},

 q0 = S1,

 F = {S1}, and

 δ is defined by the following state transition table:

(Σ, S, s
0
, δ, F)

(Q, Σ, δ, q
0
, F)

FSA (2A) 25 Young Won Lim
6/9/18

Deterministic Finite Automaton Example (2)

https://en.wikipedia.org/wiki/State_transition_table

{S1,S2} × 0,1 → {S1, S2}

FSA (2A) 26 Young Won Lim
6/9/18

Deterministic Finite Automaton Example (3)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The state S1 represents that there has been an
even number of 0s in the input so far, while S2
signifies an odd number.

A 1 in the input does not change the state of the
automaton.

When the input ends, the state will show whether
the input contained an even number of 0s or not.

If the input did contain an even number of 0s, M will
finish in state S1, an accepting state, so the input
string will be accepted.

FSA (2A) 27 Young Won Lim
6/9/18

Deterministic Finite Automaton Example (4)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The language recognized by M is

the regular language given

by the regular expression

((1*) 0 (1*) 0 (1*))*,

where "*" is the Kleene star,

e.g., 1* denotes any number

(possibly zero) of consecutive ones.

zero or more

Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/9/18

Formal Language (3A)

● Regular Language

Young Won Lim
6/9/18

 Copyright (c) 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Regular Language (3A) 3 Young Won Lim
6/9/18

Formal Language

https://en.wikipedia.org/wiki/Formal_language

a formal language is

a set of strings of symbols

together with a set of rules

that are specific to it.

Regular Language (3A) 4 Young Won Lim
6/9/18

Alphabet and Words

https://en.wikipedia.org/wiki/Formal_language

The alphabet of a formal language is

the set of symbols, letters, or tokens

from which the strings of the language may be formed.

The strings formed from this alphabet

are called words

the words that belong to a particular formal language

are sometimes called well-formed words

or well-formed formulas.

Regular Language (3A) 5 Young Won Lim
6/9/18

Formal Language

https://en.wikipedia.org/wiki/Formal_language

A formal language (formation rule)

is often defined by means of

a formal grammar

such as a regular grammar or

context-free grammar,

Regular Language (3A) 6 Young Won Lim
6/9/18

Formal Language and Natural Language

https://en.wikipedia.org/wiki/Formal_language

The field of formal language theory studies
primarily the purely syntactical aspects of such languages—
that is, their internal structural patterns.

Formal language theory sprang out of linguistics,
as a way of understanding the syntactic regularities
of natural languages.

formalized versions of subsets of natural languages
in which the words of the language represent concepts
that are associated with particular meanings or semantics.

Regular Language (3A) 7 Young Won Lim
6/9/18

Formal Language and Programming Languages

https://en.wikipedia.org/wiki/Formal_language

In computer science, formal languages are used
among others as the basis for defining
the grammar of programming languages

Regular Language (3A) 8 Young Won Lim
6/9/18

Formal Language and Complexity Theory

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Decision_problem

In computational complexity theory,
decision problems are typically defined
as formal languages, and

complexity classes are defined
as the sets of the formal languages
that can be parsed by machines
with limited computational power.

These inputs can be natural numbers,
but may also be values of some other kind,
such as strings over the binary alphabet {0,1}
or over some other finite set of symbols.
The subset of strings for which the problem
returns "yes" is a formal language,
and often decision problems are defined
in this way as formal languages.

Regular Language (3A) 9 Young Won Lim
6/9/18

Formal Language and Logic / Mathematics

https://en.wikipedia.org/wiki/Formal_language

In logic and the foundations of mathematics,
formal languages are used to represent
the syntax of axiomatic systems,
and mathematical formalism is
the philosophy that all of mathematics
can be reduced to the syntactic manipulation
of formal languages in this way.

Regular Language (3A) 10 Young Won Lim
6/9/18

Alphabet

https://en.wikipedia.org/wiki/Formal_language

An alphabet can be any set

think a character set such as ASCII.

the elements of an alphabet are called its letters.

an infinite number of elements

a finite number of elements

Regular Language (3A) 11 Young Won Lim
6/9/18

Words over an alphabet

https://en.wikipedia.org/wiki/Formal_language

A word over an alphabet can be
any finite sequence (i.e., string) of letters.

The set of all words over an alphabet Σ
is usually denoted by Σ* (using the Kleene star).

The length of a word is the number of letters
only one word of length 0, the empty word (e / ε / λ or even Λ)
By concatenation one can combine two words to form a new word

in logic, the alphabet is also known as the vocabulary
and words are known as formulas or sentences;

the letter/word metaphor : formal language
a word/sentence metaphor : logic

Regular Language (3A) 12 Young Won Lim
6/9/18

Kleene star

https://en.wikipedia.org/wiki/Kleene_star

Given a set V define

 V
0
 = {ε} (the language consisting only of the empty string),

 V
1
 = V

and define recursively the set

V
i+1

 = { wv : w V∈
i
and v ∈ V } for each i>0.

*: zero or more

+: one or more

Regular Language (3A) 13 Young Won Lim
6/9/18

Kleene star examples (1)

https://en.wikipedia.org/wiki/Kleene_star

{"ab","c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "ababc", "abcab", "abcc", "cabab",
 "cabc", "ccab", "ccc", ...}.

{"a", "b", "c"}+ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

{"a", "b", "c"}* = { ε, "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

∅* = {ε}.

∅+ = ∅

∅* = { } = , ∅

Regular Language (3A) 14 Young Won Lim
6/9/18

Kleene star examples (2)

https://en.wikipedia.org/wiki/Kleene_star

{ab, c}* =
{ ε,
 ab, c,
 abab, abc, cab, cc,
 ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc, … }

{a, b, c}+ =
{ a, b, c,
 aa, ab, ac, ba, bb, bc, ca, cb, cc,
aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }

{a, b, c}*
{ ε
 a, b, c,
 aa, ab, ac, ba, bb, bc, ca, cb, cc,
 aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }

Regular Language (3A) 15 Young Won Lim
6/9/18

Kleene star examples (3)

https://en.wikipedia.org/wiki/Kleene_star

regular expression

((1*) 0 (1*) 0 (1*))*,

(1*) = {ε, 1, 11, 111, …}

{
e

1

11

111
⋮

} {
e

1

11

111
⋮

} {
e

1

11

111
⋮

}
0 0

00 {e ,1,11,111,⋯}
010 {e ,1,11,111,⋯}

0110 {e ,1,11,111,⋯}
01110 {e ,1,11,111,⋯}

⋮

100 {e ,1,11,111,⋯}
1010 {e ,1,11,111,⋯}

10110 {e ,1,11,111,⋯}
101110 {e ,1,11,111,⋯}

⋮

1100 {e ,1,11,111,⋯}
11010 {e ,1,11,111,⋯}

110110 {e ,1,11,111,⋯}
1101110{e ,1,11,111,⋯}

⋮

11100 {e ,1,11,111,⋯}
111010{e ,1,11,111,⋯}

1110110{e ,1,11,111,⋯}
11101110{e ,1,11,111,⋯}

⋮

Regular Language (3A) 16 Young Won Lim
6/9/18

Formal Language Definition

https://en.wikipedia.org/wiki/Formal_language

A formal language L over an alphabet Σ is

a subset of Σ*, that is, a set of words over that alphabet.

Sometimes the sets of words are grouped into expressions,

whereas rules and constraints may be formulated

for the creation of 'well-formed expressions'.

Regular Language (3A) 17 Young Won Lim
6/9/18

Formal Language Examples (1)

https://en.wikipedia.org/wiki/Formal_language

The following rules describe

a formal language L

over the alphabet Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, = }:                         

● every nonempty string is in L

• that does not contain "+" or "="

• does not start with "0"

● the string "0" is in L.

● a string containing "=" is in L

• if and only if there is exactly one "=",

• and it separates two valid strings of L.

● a string containing "+" but not "=" is in L

• if and only if every "+" in the string separates two valid strings of L.

● no string is in L other than those implied by the previous rules.

Regular Language (3A) 18 Young Won Lim
6/9/18

Formal Language Examples (2)

https://en.wikipedia.org/wiki/Formal_language

Under these rules,

the string "23+4=555" is in L,

but the string "=234=+" is not.

This formal language expresses
● natural numbers,
● well-formed additions,
● and well-formed addition equalities,

but it expresses only what they look like (their syntax),

not what they mean (semantics).

for instance, nowhere in these rules is

there any indication that "0" means the number zero,

or that "+" means addition.

Regular Language (3A) 19 Young Won Lim
6/9/18

Formal Language Examples (3)

https://en.wikipedia.org/wiki/Formal_language

● L = Σ*, the set of all words over Σ;

● L = {"a"}* = {"a"n}, where n ranges over the natural numbers

and "a"n means "a" repeated n times

(this is the set of words consisting only of the symbol "a");

● the set of syntactically correct programs in a given programming language
(the syntax of which is usually defined by a context-free grammar);

● the set of inputs upon which a certain Turing machine halts; or

● the set of maximal strings of alphanumeric ASCII characters on this line, i.e.,
the set {"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII",
"characters", "on", "this", "line", "i", "e"}.

Regular Language (3A) 20 Young Won Lim
6/9/18

Formal Language Examples (4)

https://en.wikipedia.org/wiki/Formal_language

For instance, a language can be given as

● those strings generated by some formal grammar;

● those strings described or matched by a particular regular expression;

● those strings accepted by some automaton,

such as a Turing machine or finite state automaton;

● those strings for which some decision procedure
produces the answer YES.

(an algorithm that asks a sequence of related YES/NO questions)

Regular Language (3A) 21 Young Won Lim
6/9/18

Formal Grammar Example

https://en.wikipedia.org/wiki/Formal_language

the alphabet consists of a and b,
the start symbol is S,
the production rules:

 1. S → aSb
 2. S → ba

then we start with S, and can choose a rule to apply to it.
Application of rule 1, the string aSb.
Another application of rule 1, the string aaSbb.
Application of rule 2, the string aababb

The language of the grammar is then the infinite set

Regular Language (3A) 22 Young Won Lim
6/9/18

Syntax of Formal Grammars

https://en.wikipedia.org/wiki/Formal_language

a grammar G consists of the following components:

● A finite set N of nonterminal symbols,

that is disjoint with the strings formed from G.

● A finite set Σ of terminal symbols

that is disjoint from N.

● A finite set P of production rules,

● A distinguished symbol S ∈ N that is the start symbol,
also called the sentence symbol.

A grammar is formally defined as the tuple (N ,Σ, P, S)

often called a rewriting system
or a phrase structure grammar

Regular Language (3A) 23 Young Won Lim
6/9/18

Terminal and Non-terminal Symbols

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Terminal symbols are the elementary symbols
of the language defined by a formal grammar.

Nonterminal symbols (or syntactic variables)
are replaced by groups of terminal symbols
according to the production rules.

A formal grammar includes a start symbol,
a designated member of the set of nonterminals
from which all the strings in the language
may be derived by successive applications
of the production rules.

In fact, the language defined by a grammar
is precisely the set of terminal strings
that can be so derived.

Regular Language (3A) 24 Young Won Lim
6/9/18

Production Rules

https://en.wikipedia.org/wiki/Formal_language

Head → Body

● each production rule maps from one string of symbols to another

● the first string (the "head") contains

● an arbitrary number of symbols

● provided at least one of them is a nonterminal. N

● If the second string (the "body") consists solely of the empty string

● i.e., that it contains no symbols at all

● it may be denoted with a special notation (Λ , e or)ϵ

Regular Language (3A) 25 Young Won Lim
6/9/18

Grammar Examples (1)

https://en.wikipedia.org/wiki/Formal_language

Consider the grammar G
where N = { S , B }, Σ = { a , b , c }, S is the start symbol,
and P consists of the following production rules:

 1. S → aBSc
 2. S → abc
 3. Ba → aB
 4. Bb → bb

This grammar defines the language L(G) = {anbncn n ≥ 1 }∣
where an denotes a string of n consecutive a's.

Thus, the language is the set of strings that consist of 1 or more a's,
followed by the same number of b's, followed by the same number of c's.

Regular Language (3A) 26 Young Won Lim
6/9/18

Grammar Examples (2)

https://en.wikipedia.org/wiki/Formal_language

 1. S → aBSc
 2. S → abc

3. Ba → aB
 4. Bb → bb

Regular Language (3A) 27 Young Won Lim
6/9/18

Context Free Grammars

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Context-free grammars are those grammars
in which the left-hand side of each production rule
consists of only a single nonterminal symbol.

This restriction is non-trivial;
not all languages can be generated
by context-free grammars.

Those that can are called context-free languages.

S → aSb
S → ba

Regular Language (3A) 28 Young Won Lim
6/9/18

Context Free Grammar Examples

https://en.wikipedia.org/wiki/Formal_language

The language L(G) = {anbncn n ≥ 1 } ∣ is not a context-free language
the grammar G
where N = { S , B }, Σ = { a , b , c }, S is the start symbol,
and P consists of the following production rules:

 1. S → aBSc
 2. S → abc
 3. Ba → aB
 4. Bb → bb

The language {anbn n ≥ 1 }∣ is context-free
(at least 1 a followed by the same number of b)

the grammar G2 with N = { S }, Σ = { a , b }, S the start symbol,
and P the following production rules:

 1. S → a S b
 2. S → a b

Regular Language (3A) 29 Young Won Lim
6/9/18

Regular Expression Examples

https://en.wikipedia.org/wiki/Regular_expression

.at matches any three-character string
ending with "at", including "hat", "cat", and "bat".

[hc]at matches "hat" and "cat".
[^b]at matches all strings matched by .at except "bat".
[^hc]at matches all strings matched by .at other than "hat" and "cat".
^[hc]at matches "hat" and "cat", but only at the beginning of the string or
line.
[hc]at$ matches "hat" and "cat", but only at the end of the string or line.
\[.\] matches any single character surrounded by "[" and "]"

since the brackets are escaped, for example: "[a]" and "[b]".
s.* matches s followed by zero or more characters,

for example: "s" and "saw" and "seed".

[hc]?at matches "at", "hat", and "cat".
[hc]*at matches "at", "hat", "cat", "hhat", "chat", "hcat", "cchchat", ...
[hc]+at matches "hat", "cat", "hhat", "chat", "hcat", "cchchat",..., but not "at".
cat|dog matches "cat" or "dog".

Regular Language (3A) 30 Young Won Lim
6/9/18

Chomsky's four types of grammars

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Regular Language (3A) 31 Young Won Lim
6/9/18

Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Unrestricted grammar

Type-0 grammars include all formal grammars.

They generate exactly all languages
that can be recognized by a Turing machine.

These languages are also known
as the recursively enumerable or
Turing-recognizable languages.

Note that this is different from the recursive languages,
which can be decided by an always-halting Turing machine.

Regular Language (3A) 32 Young Won Lim
6/9/18

Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-sensitive grammar

Type-1 grammars generate the context-sensitive languages.

These grammars have rules of the form α A β → α γ β
with A a nonterminal and α, β, and γ strings of terminals
and/or nonterminals.

The strings α and β may be empty, but γ must be nonempty.

The rule S → is allowed ϵ
if S does not appear on the right side of any rule.

The languages described by these grammars are exactly
all languages that can be recognized by a linear bounded automaton
(a nondeterministic Turing machine
whose tape is bounded by a constant times the length of the input.)

Regular Language (3A) 33 Young Won Lim
6/9/18

Type-2 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-free grammar

Type-2 grammars generate the context-free languages.

These are defined by rules of the form A → γ
with A being a nonterminal and γ being a string of terminals and/or
nonterminals.

These languages are exactly all languages
that can be recognized by a non-deterministic pushdown automaton.

Context-free languages—or rather its subset of deterministic context-free
language—are the theoretical basis for the phrase structure of most
programming languages, though their syntax also includes context-
sensitive name resolution due to declarations and scope.

Often a subset of grammars is used to make parsing easier,
such as by an LL parser.

Regular Language (3A) 34 Young Won Lim
6/9/18

Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Regular grammar

Type-3 grammars generate the regular languages.

restricts its rules to a single nonterminal on the left-hand side

a right-hand side consisting of a single terminal,

possibly followed by a single nonterminal (right regular).

the right-hand side consisting of a single terminal,

possibly preceded by a single nonterminal (left regular).

Regular Language (3A) 35 Young Won Lim
6/9/18

Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Right regular and left regular generate the same languages.

However, if left-regular rules and right-regular rules are combined,
the language need no longer be regular.

The rule S → is also allowed here ϵ
if S does not appear on the right side of any rule.

These languages are exactly all languages
that can be decided by a finite state automaton.

Additionally, this family of formal languages
can be obtained by regular expressions.

Regular languages are commonly used
to define search patterns and
the lexical structure of programming languages.

Regular Language (3A) 36 Young Won Lim
6/9/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Regular Language (3A) 37 Young Won Lim
6/9/18

Chomsky Hierarchy

https://en.wikipedia.org/wiki/Regular_language

Regular Language (3A) 38 Young Won Lim
6/9/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Machine (FSM) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine Recursively Enumerable Language

Regular Language (3A) 39 Young Won Lim
6/9/18

Regular Language

https://en.wikipedia.org/wiki/Regular_language

a regular language (a rational language) is
a formal language that can be expressed
using a regular expression,
in the strict sense

Alternatively, a regular language can be defined
as a language recognized by a finite automaton.

The equivalence of regular expressions and
finite automata is known as Kleene's theorem.

Regular languages are very useful
in input parsing and programming language design.

Regular Language (3A) 40 Young Won Lim
6/9/18

Regular Language – Formal Definition

https://en.wikipedia.org/wiki/Regular_language

The collection of regular languages over an alphabet Σ
is defined recursively as follows:

The empty language Ø, and the empty string language {ε}
are regular languages.

For each a Σ (a belongs to Σ), ∈
the singleton language {a} is a regular language.

If A and B are regular languages,
then A B (∪ union), A • B (concatenation),
and A* (Kleene star) are regular languages.

No other languages over Σ are regular.

See regular expression for its syntax and semantics.
Note that the above cases are in effect the defining
rules of regular expression.

Regular Language (3A) 41 Young Won Lim
6/9/18

Equivalent Formalism

https://en.wikipedia.org/wiki/Regular_language

1. it is the language of a regular expression (by the above definition)

2. it is the language accepted by a nondeterministic finite automaton (NFA)

3. it is the language accepted by a deterministic finite automaton (DFA)

4. it can be generated by a regular grammar

5. it is the language accepted by an alternating finite automaton

6. it can be generated by a prefix grammar

7. it can be accepted by a read-only Turing machine

Regular Language (3A) 42 Young Won Lim
6/9/18

Regular Language Example

https://en.wikipedia.org/wiki/Regular_language

All finite languages are regular;

in particular the empty string language {ε} = Ø* is regular.

Other typical examples include the language
consisting of all strings over the alphabet {a, b}
which contain an even number of a’s, or
the language consisting of all strings of the form:
several as followed by several b’s.

A simple example of a language
that is not regular is the set of strings { anbn | n ≥ 0 }.

Intuitively, it cannot be recognized with a finite automaton,
since a finite automaton has finite memory
and it cannot remember the exact number of a's.

Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2]

