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Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the 
plane, i.e., it can be drawn on the plane in such a way 
that its edges intersect only at their endpoints. 

it can be drawn in such a way that no edges cross each 
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a 
mapping from every node to a point on a plane, and from 
every edge to a plane curve on that plane, 
such that the extreme points of each curve are the points 
mapped from its end nodes, and all curves are disjoint 
except on their extreme points.
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Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph
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Planar Representation

Discrete Mathematics, Rosen
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A planar bipartite graph
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Non-planar Graph K
3,3

Discrete Mathematics, Rosen
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Non-planar graph examples – K
5

Non-planar Non-planar Non-planar 

homeomorphicisomorphic

All these graphs are similar 
in determining whether 
they are planar or not
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All these graphs are similar
in determining whether 
they are planar or not

Non-planar graph examples – K
3,3

homeomorphicisomorphic

Non-planar Non-planar Non-planar 
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Non-planar graph examples – embedding K
3,3
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Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing
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Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G
1
 and G

2
 are homeomorphic 

if there is a graph isomorphism 
from some subdivision of G

1
 

to some subdivision of G
2
 

homeo (identity, sameness)

iso (equal)
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Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision

homeomorphic

isomorphic
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Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity. 

Kuratowski's theorem states that

    a finite graph is planar if and only if 
it contains no subgraph homeomorphic 
to K

5
 (complete graph on five vertices) or 

K
3,3

 (complete bipartite graph on six vertices, 

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3
 

is called a Kuratowski subgraph.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if 
it does not contain a subgraph 
that is a subdivision of the complete graph K

5
 or 

the complete bipartite graph K
3,3 

(utility graph).

A subdivision of a graph results 
from inserting vertices into edges
(changing an edge •——• to •—•—•) 
zero or more times.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph

homeomorphic

planar

no subgraph homeomorphic
to K

5
or K

3,3
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Homeomorphic to K
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Tree 

https://en.wikipedia.org/wiki/Tree_(graph_theory)

a tree is an undirected graph in which 
any two vertices are connected 
by exactly one path. 

any acyclic connected graph is a tree. 

A forest is a disjoint union of trees.
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 Tree Condition  (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A tree is an undirected graph G 

that satisfies any of the following equivalent conditions:

G is connected and has no cycles.

G is acyclic, and a simple cycle is formed if any edge is added to G.

G is connected, but is not connected if any single edge is removed from G.

G is connected and the 3-vertex complete graph K
3
 is not a minor of G.

Any two vertices in G can be connected by a unique simple path.
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 Tree Condition  (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is acyclic, and a simple cycle is 
formed if any edge is added to G.

G is connected, but is not connected 
if any single edge is removed from G.
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 Tree Condition  (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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 Tree Condition  (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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 Tree Condition  (5)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

If G has finitely many vertices, 
say n vertices, then the above statements 
are also equivalent to any of the following conditions:

G is connected and has n − 1 edges.

G has no simple cycles and has n − 1 edges.
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 Tree Condition  (6)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is connected and the 3-vertex 
complete graph K

3
is not a minor of G.

deleting edges
deleting vertices

contracting edges
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Graph Minor

https://en.wikipedia.org/wiki/Graph_minor

In graph theory, an undirected graph H 
is called a minor of the graph G 
if H can be formed from G 
by deleting edges and vertices and 
by contracting edges.

contracting an edge

deleting an edge

deleting a vertex

deleting an edge
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Tree Examples

https://en.wikipedia.org/wiki/Tree_(data_structure)
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Terminology used in trees (1)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Root

    The top node in a tree.

Child

    A node directly connected to another node when moving away from the Root.

Parent

    The converse notion of a child.

Siblings

    A group of nodes with the same parent.

Descendant

    A node reachable by repeated proceeding from parent to child.

Ancestor

    A node reachable by repeated proceeding from child to parent.
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Terminology used in trees (2)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Leaf (less commonly called External node)

    A node with no children.

Branch (Internal node)

    A node with at least one child.

Degree

    The number of subtrees of a node.

Edge

    The connection between one node and another.

Path

    A sequence of nodes and edges connecting a node with a descendant.
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Terminology used in trees (3)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Level

    The level of a node is defined 

by 1 + (the number of connections between the node and the root).

Height of node

    The height of a node is the number of edges 

     on the longest path between that node and a leaf.

Height of tree

    The height of a tree is the height of its root node.

Depth

    The depth of a node is the number of edges 

     from the tree's root node to the node.

Forest

    A forest is a set of n ≥ 0 disjoint trees.

Some literatures have the 
reversed definitions of  
height and depth

Depth

Depth

Height
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Depth 

https://en.wikipedia.org/wiki/Tree_(data_structure)
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Height 

https://en.wikipedia.org/wiki/Tree_(data_structure)
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Binary Tree 

https://en.wikipedia.org/wiki/Binary_tree

a binary tree is a tree data structure in which 
each node has at most two children, 
(the left child, the right child)

A recursive definition using just set theory notions 
is that a (non-empty) binary tree is a tuple (L, S, R), 
where L and R are binary trees or the empty set and 
S is a singleton set. 

Some authors allow the binary tree 
to be the empty set as well. 



Tree Overview (1A) 18 Young Won Lim
6/8/18

Full Binary Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A rooted binary tree has a root node and 
every node has at most two children.

A full binary tree is 
(proper, plane binary tree)  
a tree in which every node 
has either 0 or 2 children.
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Perfect Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A perfect binary tree is a binary tree in which 
all interior nodes have two children and 
all leaves have the same depth or same level.

also called a complete binary tree 

the same depth (level).

two children
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Complete Binary Trees 

https://en.wikipedia.org/wiki/Tree_(graph_theory)

In a complete binary tree 
every level, except possibly the last, 
is completely filled, 
and all nodes in the last level are 
as far left as possible. 

An alternative definition is a perfect tree 
whose rightmost leaves (perhaps all) 
have been removed. 
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Complete Binary Trees and Linear Arrays

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Different use of compute binary trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Some authors use the term complete
to refer instead to a perfect binary tree 
as defined above, 
in which case they call this type of tree 
an almost complete binary tree or 
nearly complete binary tree. 

complete

perfect

nearly complete

complete
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Properties of Binary Trees (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A complete binary tree 
can have between 1 and 2m-1 nodes 
at the last level m.

Level l=1

Level l=2

Level l=3

Level l=4

20
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depth d=0

depth d=1

depth d=2

depth d=3
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Properties of Binary Trees (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of nodes n in a full binary tree, is
at least n = 2d + 1 and 
at most n = 2d+1 − 1, 
where d is the detph of the tree. 

A tree consisting of only a root node 
has a depth of 0.

d=0

d=1

d=2

d=3
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Properties of Binary Trees (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Properties of Binary Trees (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of leaf nodes is  m 
in a perfect binary tree, 
is  m=(n+1)/2 

because the number of non-leaf 
(internal) nodes is m–1

This means that a perfect binary tree
with m leaves has 
n = 2m–1 nodes.

20

21-1

22-1

23-1

21

22

23

m

m-1  

m-1  

m-1  

m

m

m



Young Won Lim
6/8/18

References

[1] http://en.wikipedia.org/
[2] 



Young Won Lim
6/6/18

Tree Traversal (1A)



Young Won Lim
6/6/18

 Copyright (c)  2015 - 2018  Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no 
Back-Cover Texts.  A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.



Tree Traversal (2A) 3 Young Won Lim
6/6/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + * 

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D – 
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Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + * 

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D – 

+

A B

+

A B

*

C +

B C

*

A /

C D

+

/

A B

D

A B

–

*

+ C

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm
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Tree Traversal 

https://en.wikipedia.org/wiki/Morphism

Depth First Search Breadth First Search

F
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C E
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Depth First Search
Pre-Order
In-order
Post-Order
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Depth First Search on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

Depth First Search

Three Variations
Pre-Order, In-Order, Post-Order

pre-order post-order

in-order

+

*

–a

b c

/

d ea
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Pre-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Tree_traversal

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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In-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Tree_traversal

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Tree_traversal

+
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–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Binary Tree Traversal 

https://en.wikipedia.org/wiki/Tree_traversal

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order
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Pre-Order Traversal on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

pre-order function 

    Check if the current node is empty / null.

    Display the data part of the root (or current node).

    Traverse the left subtree by recursively calling the pre-order function.

    Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order post-order

in-order
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In-Order Traversal on Binary Trees

https://en.wikipedia.org/wiki/Tree_traversal

in-order function

    Check if the current node is empty / null.

    Traverse the left subtree by recursively calling the in-order function.

    Display the data part of the root (or current node).

    Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order post-order

in-order
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Post-Order Traversal on Binary Trees 

https://en.wikipedia.org/wiki/Tree_traversal

post-order function

    Check if the current node is empty / null.

    Traverse the left subtree by recursively calling the post-order function.

    Traverse the right subtree by recursively calling the post-order function.

    Display the data part of the root (or current node).

ACEDBHIGH

pre-order post-order

in-order
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Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
  if (node = null)
    return
  inorder(node.left)
  visit(node)
  inorder(node.right)

preorder(node)
  if (node = null)
    return

visit(node)
  preorder(node.left)
  preorder(node.right)

postorder(node)
  if (node = null)
    return
  postorder(node.left)

postorder(node.right)
  visit(node)

1

2 3

2

1 3

3

1 2
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Pre-Order recursive algorithm

https://en.wikipedia.org/wiki/Tree_traversal

preorder(node)
  if (node = null)
    return

visit(node)
  preorder(node.left)
  preorder(node.right)

F
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Da

C E

G

H

IA
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Da

C E

G

H
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C E
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aA D
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Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
  s ← empty stack

  while (not s.isEmpty() or 
    node ≠ null)

    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      node ← s.pop()
      visit(node)

node ← node.right

iterativePreorder(node)
  if (node = null)

return
  s ← empty stack
  s.push(node)

while (not s.isEmpty())
    node ← s.pop()
    visit(node)
    // right child is pushed first 
    // so that left is processed first
    if (node.right ≠ null)
      s.push(node.right)
    if (node.left ≠ null)
      s.push(node.left)

iterativePostorder(node)
  s ← empty stack
  lastNodeVisited ← null

  while (not s.isEmpty() or node ≠ null)
    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      peekNode ← s.peek()
      // if right child exists and traversing

// node from left child, then move right
      if (peekNode.right ≠ null and 

lastNodeVisited ≠ peekNode.right)
        node ← peekNode.right
      else
        visit(peekNode)
        lastNodeVisited ← s.pop()
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Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
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Queue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
g
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Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search) BFS (Breadth First Search)
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DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search)A recursive implementation of DFS:

  procedure DFS(G,v):
      label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
          if vertex w is not labeled as discovered then
              recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

  procedure DFS-iterative(G,v):
      let S be a stack
      S.push(v)
      while S is not empty
          v = S.pop()
          if v is not labeled as discovered:
              label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
                  S.push(w)
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BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):
    
    create empty set S
    create empty queue Q      

    add root to S
Q.enqueue(root)  

    while Q is not empty:
        current = Q.dequeue()
        if current is the goal:
            return current
        for each node n that is adjacent to current:

if n is not in S:
                add n to S
                n.parent = current
                Q.enqueue(n)
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Ternary Tree 

Rosen

n o p

j k

e f

b c d

a

g h i

l m

   

 

three children

two children

one children
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Ternary Tree Traversal

Rosen 

pre-order post-order

in-order

pre-order post-order

in-order

Ternary treeBinary tree
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Pre-Order Traversal on Ternary Trees

Rosen

n o p

j k

e f

b c d

a

g h i

l m

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i
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In-Order Traversal on Ternary Trees

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i
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Post-Order  Traversal on Ternary Trees

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a
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Ternary 

Ternary 

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
    Made up of three things; treble, triadic, triple, triplex
    Arranged in groups of three
    (mathematics) To the base three [quotations ▼]
    (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word 
relating to the number eleven but there is one that relates to the number twelve: 
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary
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Binary Search Tree (1) 

https://en.wikipedia.org/wiki/Binary_search_tree

Binary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container: 
data structures that store "items" 
(such as numbers, names etc.) in memory. 

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key 
(e.g., finding the phone number of a person by name).
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Binary Search Tree (2) 

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use 
the principle of binary search

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion) 
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations 
on hash tables.
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Binary Search Tree (3) 

https://en.wikipedia.org/wiki/Binary_search_tree

when looking for a key in a tree 
or looking for a place to insert a new key, 
they traverse the tree from root to leaf, 
making comparisons to keys stored in the nodes
deciding to continue in the left or right subtrees, 
on the basis of the comparison. 
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Node, Left Child, Right Child

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Subtrees

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14
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Node, Left Subtree, Right Subtree

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

13

141

3

6a

4 7

1

10

13

14

6

4 7 13

14
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In-Order Traversal

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14
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Successor Examples (1) 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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4 7

10

d

141
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4 7

10

13
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141
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3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

3-4 4-6 6-7 7-8

8-10 10-13 13-14 14-
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Successor Examples (2) 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html
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6a

4 7
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3

6a

4 7

10

13

141
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Successor Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7

23

25

4

2

3

6

5

9 19

8 11 15 20

12

7
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Successor Cases 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

 

 

 

 

 

 

 

 

 

 

 

If the right child exists, 
then the minimum 

in the right subtree 

–  the leftmost node

the parent of the farthest 
node that can be reached 
by following only right 
edges backward.
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Predecessor Examples (1)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

1-3 3-4 4-6 6-7

7-8 8-10 10-13 13-14
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Predecessor Examples (2)

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

8
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6a

4 7

10

d

141
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Predecessor  Examples (3)

https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

23
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Predecessor Cases

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

 

 

 

 

 

 

 

 

 

 

 

 

If the left child exists, then 
the maximum 

in the left subtree 

–  the rightmost node

the parent of the farthest 
node that can be reached 
by following only left 
edges backward.

  

 



Binary Search Tree (3A) 18 Young Won Lim
6/9/18

Different BST’s with the same data

6

3

41

8

107

13

14 1

6

74

13

1410

3

8

4

3

1

6

14

7

10

8 13

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Unbalanced BSTs

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

4

6

7

8

10

13

14

13

14

10

8

7

6

4

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14
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Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14



Binary Search Tree (3A) 21 Young Won Lim
6/9/18

Insertion 

https://en.wikipedia.org/wiki/Binary_search_tree

Insertion begins as a search would begin; 

if the key is not equal to that of the root,

we search the left or right subtrees as before. 

at an leaf node, add the new key-value pair 

as its right or left child, 

depending on the node's key. 

first examine the root

and recursively insert the new node 

to the left subtree if its key is less than that of the root, 

or the right subtree if its key is greater than or equal to the root.
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Insertion Example (1) 

8 8

3

8

3 10

8

3

a

10

1

8

3

6a

4

10

1

8

3

6a

4 7

10

1

8

3

6a

4 7

10

141

8

3

6a

4 7

10

13

141

insert(8) insert(3) insert(10) insert(1)

insert(4) insert(7) insert(14) insert(13)

8

3

6a

10

1

insert(6)

Insert(8→3→10→1→6→4→7→14→13 )
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Insertion Example (2) 

8 8

1

8

1 10

8

1 10

8

1

3

4

10

8

7

10

14

13

insert(8) insert(1) insert(10) insert(3)

insert(4) insert(7) insert(13) insert(14)

8

1

3

10

insert(6)

3

6

6

1

3

4

6

8

7

101

3

4

6

13

8

7

101

3

4

6

Insert(8→3→10→1→6→4→7→14→13 )

Insert(8→1→10→3→6→4→7→13→14 )
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Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children: 
simply remove the node from the tree.

2. Deleting a node with one child: 
remove the node and replace it with its child.

3. Deleting a node with two children: 
call the node to be deleted D. 
Do not delete D. 
Instead, choose either its in-order predecessor node 3(a) 
or its in-order successor node as replacement node E. 3(b)
Copy the user values of E to D
If E does not have a child 

simply remove E from its previous parent G. 
If E has a child, say F, it is a right child. 

Replace E with F at E's parent.
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Deletion – Case 1

https://en.wikipedia.org/wiki/Binary_search_tree

1. Deleting a node with no children: 
simply remove the node from the tree.

8

3

6a

4 7

10

13

141

8

3

6a

7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

7

10

141

delete(4)

delete(4)

delete(13)
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Deletion – Case 2 

https://en.wikipedia.org/wiki/Binary_search_tree

2. Deleting a node with one child: 
remove the node and replace it with its child.

8

3

6a

4 7

10

13

141

8

1

6

4 7

10

13

14

8

3

6a

4 7

10

13

141

8

1

6

4 7

14

13

delete(3)

delete(3)

delete(10)
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Deletion – Case 3 : using a successor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children: 
call the node to be deleted D. 
its in-order successor node as E.  Copy E to D

8

3

6a

4 7

11

9 141

Leftmost 
E has no child 
simply remove E 
from its parent G.

9

3

6a

4 7

11

141

8

3

6a

10

11

9 141

Leftmost 
E has a child F
it is a right child 
replace E with F 
at E's parent.

9

3

6a

11

10 141

delete(8)

delete(8)
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Deletion – Case 3 : using a predecessor

https://en.wikipedia.org/wiki/Binary_search_tree

3. Deleting a node with two children: 
call the node to be deleted D. 
its in-order predecessor node as E.  Copy E to D

8

4

6a

1 3

11

9 142

Rightmost
E has no child 
simply remove E 
from its parent G.

Rightmost 
E has a child F
it is a left child 
replace E with F 
at E's parent.

8

4

6a

1

11

9 142

5

6

4

a

1 3

11

9 142

6

4

5a

1

11

9 142

delete(8)

delete(8)
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Deletion

https://en.wikipedia.org/wiki/Binary_search_tree

Deleting a node with two children from a binary search tree. 
First the leftmost node in the right subtree, 
the in-order successor E, is identified. 
Its value is copied into the node D being deleted. 
The in-order successor can then be easily deleted 
because it has at most one child. 
The same method works symmetrically 
using the in-order predecessor C.
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FSM and Digital Logic Circuits

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

 Latch

 D FlipFlop

 Registers

 Timing

 Mealy machine

 Moore machine

 Traffic Lights Examples
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NOR-based SR Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=1

RESET Q=0

Q=1

S=1

R=0

SET Q=1

Q=0

1

0

0

1 1

0

0

1
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NOR-based SR Latch – HOLD 

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=0

HOLD Q=old Q

Q=old Q

0

0

0

1 0

0

0

1→0

→1 →0

→1
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NOR-based SR Latch
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Hold
begins

Hold
begins

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q
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NOR-based SR Latch States
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0 1

SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SET SETHOLD, HOLD,

RESET
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SET
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RESET
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R=0

HOLD Q=old Q

Q=old Q
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NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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NOR-based D Latch – HOLD 

C

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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S=0

R=0

HOLD Q=old Q
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C=0

D=X

C=0
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NOR-based D Latch – Set / Reset / Hold 

C

D

Q

transparent opaque transparent opaque

SET
begins

RST
begins

SET
begins

RST
begins

Hold
begins

Hold
begins

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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NOR-based D Latch – transparent / opaque  

C

D

Q

transparent opaque transparent

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output

D→Q
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D QQ
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NOR-based D Latch States
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D Latch States

0 1

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Master-Slave FlipFlops

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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C

Q

Q
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Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output 
of the master is 
transparently 
reaches the 
output of the 
slave

this value is 
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Master Slave D FlipFlop – transparent / opaque  

C

D

Q

transparent

opaque

transparent

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output
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Master-Slave D FlipFlop – Falling Edge
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D Latch & D FlipFlop
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D FlipFlop with Enable (1)

D

Q

Q
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Q

Q
CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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D FlipFlop with Enable (2)
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Registers

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FF Timing (Ideal)

D
3:0

Q
3:0

Inputs to FFs

Outputs of FFs
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States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
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edge
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edge

(t+3)th 
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edge
(t)th 
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Sequence of States

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
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Q
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Find inputs to FFs
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(t+5)th
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(t)th 
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How to change current state

NextSt

CurrSt

Compute NextSt from 
CurrSt, Ta, Tb

This NextSt becomes 
a new CurrSt

Compute NextSt

CurrSt  <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Finding FF Inputs

D  Q 

D  Q 

D  Q 

D  Q 

Comb
Next
State
Logic

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
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FSM
inputs

During the tth clock edge period, 

Compute the next state Q(t+1) 
using the current state Q(t) and 
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th, 
the computed next state Q(t+1) 
becomes the current state   

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

FSM 
Inputs

Find the boolean functions 
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0, 
and external FSM inputs
for all possible cases.

Q(t)

Inputs 

+

Q(t+1)

Current
State

Next
State

input

Q(t) Q(t+1)
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State Transition

Q(t+1)

Q(t+1)Q(t)

D
3:0

Q
3:0

FSM
Inputs

Q(t+1)

Q(t)

Inputs

Compute the next state
using the current state 
and external inputs
in the current clock cycle

After the next clock edge, 
the computed next state (FF Inputs)  
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Traffic Lights Example

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FSM Inputs and Outputs

L
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L
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T
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T
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Traffic Lights - Outputs
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Sensor - Inputs

T
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T
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Four States 
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Output Functions : L
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Moore FSM 
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Moore FSM Implementation
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Output Functions : L
A1

, L
A0

, L
B1

, L
B0

G : 00
Y : 01
R : 10

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

L
A1=S1

L
A 0=S1 S0

L
B1=S1

L
B0=S1 S0

Current 
State 

FSM
Output 

{00,01,10,11} {0010,0110, 1000,1001}→

(L
A 1, LA 0, LB1, LB 0)(S1 S0)



FSM Overview (1A) 41 Young Won Lim
6/9/18

Moore FSM
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Mealy FSM
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State Diagram 

https://en.wikipedia.org/wiki/Finite-state_machine

ST2 ST0 ST1

E: Entry Action

X: Exit Action

I: Input Action

state

output

active output

active output

active output mealy

moore

moore

time
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Acceptors 

https://en.wikipedia.org/wiki/Finite-state_machine

Acceptor FSM: parsing the string "nice"
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Recognizers

https://en.wikipedia.org/wiki/Finite-state_machine

Representation of a finite-state machine;

determines whether a binary number has 

an even number of 0s, 

where S
1
 is an accepting state.
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Classifiers 

https://en.wikipedia.org/wiki/Finite-state_machine

A classifier is a generalization of 

a finite state machine that, 

similar to an acceptor, 

produces a single output on termination 

but has more than two terminal states
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Transducers

https://en.wikipedia.org/wiki/Finite-state_machine

Transducers generate output based on a 
given input and/or a state using actions. 

They are used for control applications and in 
the field of computational linguistics.
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Acceptors, Recognizers, Transducers

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

acceptors: either accept the input or not

recognizers: either recognize the input

transducers: generate output from given input
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General Transducers

https://en.wikipedia.org/wiki/Transducer

Transducers are used in electronic communications 
systems to convert signals of various physical forms to 
electronic signals, and vice versa. In this example, the 
first transducer could be a microphone, and the second 
transducer could be a speaker.
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Transducers : Moore and Mealy Machines

https://en.wikipedia.org/wiki/Finite-state_machine

Fig. 6 Transducer FSM: Moore 
model example

Fig. 7 Transducer FSM: Mealy model example

There are two input actions (I:): 

"start motor to close the door       
if command_close arrives"  

"start motor in the other direction to open the door
if command_open arrives".
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Moore machine example

https://en.wikipedia.org/wiki/Moore_machine

output does not depend on inputs
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Mealy machine

https://en.wikipedia.org/wiki/Mealy_machine

input / output

output does depend on inputs
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Mathematical Model – transducers (1)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A finite-state transducer is a sextuple (Σ, Γ, S, s
0
, δ, ω), where:

● Σ is the input alphabet (a finite non-empty set of symbols).
● Γ is the output alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.

● s
0
 is the initial state, an element of S. 

● δ is the state-transition function: δ : S × Σ → S
● ω is the output function.

Moore machine : ω : S → Γ

Mealy machine : ω : S × Σ → Γ 

(Σ, Γ, S, s
0
, δ, ω)

(I, O, S, f, g, σ)
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Mathematical Model – transducers (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

If the output function is a function of a state and input alphabet

(ω : S × Σ → Γ) that definition corresponds to the Mealy model, 

and can be modelled as a Mealy machine. 

If the output function depends only on a state (ω : S → Γ) 

that definition corresponds to the Moore model, 

and can be modelled as a Moore machine. 

A finite-state machine with no output function at all is known as a 
semiautomaton or transition system.
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Mathematical Models – acceptors

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A deterministic finite state machine or 

acceptor deterministic finite state machine is 

a quintuple (Σ, S, s
0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.

● s
0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S 
● F is the set of final states, a (possibly empty) subset of S. output function ω 

A set of accepted states

output set {0, 1} 
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Finite State Tranducers and Acceptors

finite-state transducer (Σ, Γ, S, s
0
, δ, ω)

finite state acceptor (Σ, S, s
0
, δ, F)

limited finite state machine (Σ, S, δ)

Finite State 
Automaton (FSA)

Finite State 
Machine (FSM)

Σ is the input alphabet (a finite non-empty set of symbols).

S is a finite, non-empty set of states.

δ is the state-transition function: δ : S × Σ → S

s
0
 is the initial state, an element of S. 

F is the set of final states, a (possibly empty) subset of S.

Γ is the output alphabet (a finite, non-empty set of symbols).

ω is the output function.



Young Won Lim
6/9/18

References

[1] http://en.wikipedia.org/
[2] 



Young Won Lim
6/9/18

Automata Theory (2A)



Young Won Lim
6/9/18

 Copyright (c)  2018  Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no 
Back-Cover Texts.  A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.



FSA (2A) 3 Young Won Lim
6/9/18

Automata

https://en.wikipedia.org/wiki/Automata_theory

The word automata (the plural of automaton) 

comes from the Greek word α τόματαὐ , 

which means "self-acting".
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Automata Theory

https://en.wikipedia.org/wiki/Automata_theory

Automata theory is the study of 
abstract machines and automata, 
as well as the computational problems 
that can be solved using them. 

It is a theory in theoretical computer science 
and discrete mathematics. 
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Automata Informal description (1) – Inputs

https://en.wikipedia.org/wiki/Automata_theory

An automaton runs

when it is given some sequence of inputs 

in discrete (individual) time steps or steps. 

An automaton processes one input 

picked from a set of symbols or letters, 

which is called an alphabet. 

The symbols received by the automaton 

as input at any step are 

a finite sequence of symbols called words. 

word

alphabet

1000100

{0,1}
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Automata informal description (2) – States 

https://en.wikipedia.org/wiki/Automata_theory

An automaton has a finite set of states. 

At each moment during a run of the automaton, 

the automaton is in one of its states. 

When the automaton receives new input 

it moves to another state (or transitions) 

based on a function that takes 

the current state and input symbol as parameters. 

This function is called the transition function.
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Automata informal description (3) – Stop 

https://en.wikipedia.org/wiki/Automata_theory

The automaton

reads the symbols of the input word 

one after another and 

transitions from state to state 

according to the transition function 

until the word is read completely. 

Once the input word has been read, 

the automaton is said to have stopped.

The state at which the automaton stops 

is called the final state.

word 1000100
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Automata informal description (4) – Accept / Reject

https://en.wikipedia.org/wiki/Automata_theory

Depending on the final state, 

it's said that the automaton 

either accepts or rejects an input word. 

There is a subset of states of the automaton, 

which is defined as the set of accepting states. 

If the final state is an accepting state, 

then the automaton accepts the word. 

Otherwise, the word is rejected. 

word 1000100
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Automata informal description (5) – Language

https://en.wikipedia.org/wiki/Automata_theory

The set of all the words accepted 

by an automaton is called the 

"language of that automaton". 

Any subset of the language of an automaton is 

a language recognized by that automaton.
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Automata informal description (6) – Decision on inputs 

https://en.wikipedia.org/wiki/Automata_theory

an automaton is a mathematical object 

that takes a word as input 

and decides whether to accept it or reject it. 

Since all computational problems are 

reducible into the accept/reject question on inputs, 

(all problem instances can be represented 

in a finite length of symbols), 

automata theory plays a crucial role 

in computational theory.
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Automata Applications

https://en.wikipedia.org/wiki/Automata_theory

Automata theory is closely related to formal language theory. 

An automaton is a finite representation of a formal language 
that may be an infinite set. 

Automata are often classified by the class of formal languages 
they can recognize, typically illustrated by the Chomsky hierarchy, 
which describes the relations between various languages and kinds of 
formalized logic.

Automata play a major role in 
theory of computation, 
compiler construction, 
artificial intelligence, 
parsing and 
formal verification.
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

● Combinational Logic

● Finite State Automaton (FSA)

● Pushdown Automaton (PDA)

● Turing Machine
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Automaton (FSA) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine  Recursively Enumerable Language

Automaton Formal Languages
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Finite State Automaton

https://en.wikipedia.org/wiki/Automata_theory

The figure at right illustrates a finite-state 
machine, which belongs to a well-known type 
of automaton. 

This automaton consists of 
states (represented in the figure by circles) 
and transitions (represented by arrows). 

As the automaton sees a symbol of input, 
it makes a transition (or jump) 
to another state, according to its transition 
function, which takes the current state and
the recent symbol as its inputs.
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Pushdown Automaton (1)

https://en.wikipedia.org/wiki/Automata_theory

a type of automaton that employs a stack.

The term "pushdown" refers to the fact that 

the stack can be regarded as being "pushed down" 

like a tray dispenser at a cafeteria, 

since the operations never work on elements 

other than the top element. 

A stack automaton, by contrast, does allow 

access to and operations on deeper elements.
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Pushdown Automaton (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

a pushdown automaton (PDA) is 
a type of automaton that employs a stack
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Turing Machine (1)

https://en.wikipedia.org/wiki/Automata_theory

A Turing machine is 

a mathematical model of computation 

that defines an abstract machine, 

which manipulates symbols on a strip of tape 

according to a table of rules. 

Despite the model's simplicity, 

given any computer algorithm, 

a Turing machine capable of simulating 

that algorithm's logic can be constructed.
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Turing Machine (2)

https://en.wikipedia.org/wiki/Turing_machine
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1. Definition of Finite State Automata

https://en.wikipedia.org/wiki/Automata_theory

A deterministic finite automaton is represented formally 

by a 5-tuple <Q, Σ, δ, q
0
, F>, where:

● Q is a finite set of states.

● Σ is a finite set of symbols, called the alphabet of the automaton.

● δ is the transition function, that is, δ: Q × Σ → Q.

● q
0
 is the start state, that is, the state of the automaton 

    before any input has been processed, where q
0

 ∈ Q.

● F is a set of states of Q (i.e. F⊆Q) called accept states.
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2. Deterministic Pushdown Automaton

https://en.wikipedia.org/wiki/Pushdown_automaton

A PDA is formally defined as a 7-tuple:

M = (Q, Σ, Γ, δ, q
0
, Z, F)  where

● Q is a finite set of states
● Σ is a finite set which is called the input alphabet
● Γ is a finite set which is called the stack alphabet
● δ is a finite subset of Q×(Σ  {ε})×∪ Γ×Q×Γ∗, the transition relation.

● q
0
  ∈ Q is the start state

● Z  ∈ Γ is the initial stack symbol
● F  ⊆ Q is the set of accepting states
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3. Turing Machine

https://en.wikipedia.org/wiki/Turing_machine

Turing machine as a 7-tuple  M = (Q, Γ, b, Σ, δ, q
0
, F) where

● Q is a finite, non-empty set of states;
● Γ is a finite, non-empty set of tape alphabet symbols;
● b ∈ Γ is the blank symbol
● Σ  ⊆ Γ  { b } is the set of ∖ input symbols in the initial tape 

contents;

● q
0
  ∈ Q is the initial state;

● F ⊆ Q  is the set of final states or accepting states.
● δ : ( Q  ∖ F ) × Γ → Q × Γ × { L , R }  is transition function, 

where L is left shift, R is right shift.

The initial tape contents is said to be accepted by M if it eventually 
halts in a state from F .

 ∖ set minus
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FSA, PDA, Turing Machine

Turing machine (Q, Γ, b, Σ, δ, q
0
, F) 

Deterministic Pushdown Automaton (Q, Σ, Γ, δ, q
0
, Z, F) 

Deterministic Finite State Automaton (Q, Σ, δ, q
0
, F)

Σ is the input alphabet (a finite non-empty set of symbols).

Q is a finite, non-empty set of states.

δ is the state-transition function: δ : S × Σ → S

s
0
 is the initial state, an element of S. 

F is the set of final states, a (possibly empty) subset of S.

Γ is a finite set which is called the stack alphabet

Z  ∈ Γ is the initial stack symbol

Γ is a finite, non-empty set of tape alphabet symbols;

b ∈ Γ is the blank symbol
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Deterministic Finite State Automaton (FSA)
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Deterministic Finite Automaton Example (1)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The following example is of a DFA M, with a binary alphabet, 

which requires that the input contains an even number of 0s.

M = (Q, Σ, δ, q0, F) where

    Q = {S1, S2},

    Σ = {0, 1},

    q0 = S1,

    F = {S1}, and

    δ is defined by the following state transition table:

(Σ, S, s
0
, δ, F)

(Q, Σ, δ, q
0
, F)
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Deterministic Finite Automaton Example (2)

https://en.wikipedia.org/wiki/State_transition_table

{S1,S2} × 0,1 → {S1, S2}
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Deterministic Finite Automaton Example (3)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The state S1 represents that there has been an 
even number of 0s in the input so far, while S2 
signifies an odd number. 

A 1 in the input does not change the state of the 
automaton. 

When the input ends, the state will show whether 
the input contained an even number of 0s or not. 

If the input did contain an even number of 0s, M will 
finish in state S1, an accepting state, so the input 
string will be accepted.
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Deterministic Finite Automaton Example (4)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The language recognized by M is

the regular language given 

by the regular expression 

((1*) 0 (1*) 0 (1*))*, 

where "*" is the Kleene star, 

e.g., 1* denotes any number 

(possibly zero) of consecutive ones.

zero or more 
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Formal Language

https://en.wikipedia.org/wiki/Formal_language

a formal language is 

a set of strings of symbols 

together with a set of rules 

that are specific to it.
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Alphabet and Words 

https://en.wikipedia.org/wiki/Formal_language

The alphabet of a formal language is 

the set of symbols, letters, or tokens

from which the strings of the language may be formed.

The strings formed from this alphabet 

are called words

the words that belong to a particular formal language 

are sometimes called well-formed words 

or well-formed formulas. 
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Formal Language

https://en.wikipedia.org/wiki/Formal_language

A formal language (formation rule) 

is often defined by means of 

a formal grammar 

such as a regular grammar or 

context-free grammar, 
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Formal Language and Natural Language

https://en.wikipedia.org/wiki/Formal_language

The field of formal language theory studies 
primarily the purely syntactical aspects of such languages—
that is, their internal structural patterns. 

Formal language theory sprang out of linguistics, 
as a way of understanding the syntactic regularities 
of natural languages. 

formalized versions of subsets of natural languages 
in which the words of the language represent concepts 
that are associated with particular meanings or semantics. 
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Formal Language and Programming Languages

https://en.wikipedia.org/wiki/Formal_language

In computer science, formal languages are used 
among others as the basis for defining 
the grammar of programming languages
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Formal Language and Complexity Theory

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Decision_problem

In computational complexity theory, 
decision problems are typically defined 
as formal languages, and 

complexity classes are defined 
as the sets of the formal languages 
that can be parsed by machines 
with limited computational power.

These inputs can be natural numbers, 
but may also be values of some other kind,
such as strings over the binary alphabet {0,1} 
or over some other finite set of symbols. 
The subset of strings for which the problem 
returns "yes" is a formal language, 
and often decision problems are defined 
in this way as formal languages. 
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Formal Language and Logic / Mathematics

https://en.wikipedia.org/wiki/Formal_language

In logic and the foundations of mathematics, 
formal languages are used to represent 
the syntax of axiomatic systems, 
and mathematical formalism is 
the philosophy that all of mathematics 
can be reduced to the syntactic manipulation 
of formal languages in this way.
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Alphabet

https://en.wikipedia.org/wiki/Formal_language

An alphabet can be any set

think a character set such as ASCII. 

the elements of an alphabet are called its letters.

an infinite number of elements 

a finite number of elements
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Words over an alphabet

https://en.wikipedia.org/wiki/Formal_language

A word over an alphabet can be 
any finite sequence (i.e., string) of letters. 

The set of all words over an alphabet Σ 
is usually denoted by Σ* (using the Kleene star). 

The length of a word is the number of letters 
only one word of length 0, the empty word (e / ε / λ or even Λ)
By concatenation one can combine two words to form a new word

in logic, the alphabet is also known as the vocabulary 
and words are known as formulas or sentences;

the letter/word metaphor : formal language
a word/sentence metaphor : logic
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Kleene star

https://en.wikipedia.org/wiki/Kleene_star

Given a set V define

    V
0
 = {ε} (the language consisting only of the empty string),

    V
1
 = V

and define recursively the set

V
i+1

 = { wv : w  V∈
i 
and v ∈ V } for each i>0.

*: zero or more

+: one or more
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Kleene star examples (1)

https://en.wikipedia.org/wiki/Kleene_star

{"ab","c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "ababc", "abcab", "abcc", "cabab",
            "cabc", "ccab", "ccc", ...}.

{"a", "b", "c"}+ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

{"a", "b", "c"}* = { ε, "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}.

∅* = {ε}.

∅+ =  ∅

∅* = { } = , ∅
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Kleene star examples (2)

https://en.wikipedia.org/wiki/Kleene_star

{ab, c}* = 
{ ε, 
 ab, c, 
 abab, abc, cab, cc, 
 ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc, … }

{a, b, c}+ = 
{ a, b, c, 
 aa, ab, ac, ba, bb, bc, ca, cb, cc, 
aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }

{a, b, c}*
{ ε
 a, b, c, 
 aa, ab, ac, ba, bb, bc, ca, cb, cc, 
 aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, … }
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Kleene star examples (3)

https://en.wikipedia.org/wiki/Kleene_star

regular expression 

((1*) 0 (1*) 0 (1*))*, 

(1*) = {ε, 1, 11, 111, …}

{
e

1

11

111
⋮

} {
e

1

11

111
⋮

} {
e

1

11

111
⋮

}
0 0

00 {e ,1,11,111,⋯}
010 {e ,1,11,111,⋯}

0110 {e ,1,11,111,⋯}
01110 {e ,1,11,111,⋯}

⋮

100 {e ,1,11,111,⋯}
1010 {e ,1,11,111,⋯}

10110 {e ,1,11,111,⋯}
101110 {e ,1,11,111,⋯}

⋮

1100 {e ,1,11,111,⋯}
11010 {e ,1,11,111,⋯}

110110 {e ,1,11,111,⋯}
1101110{e ,1,11,111,⋯}

⋮

11100 {e ,1,11,111,⋯}
111010{e ,1,11,111,⋯}

1110110{e ,1,11,111,⋯}
11101110{e ,1,11,111,⋯}

⋮
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Formal Language Definition

https://en.wikipedia.org/wiki/Formal_language

A formal language L over an alphabet Σ is 

a subset of Σ*, that is, a set of words over that alphabet. 

Sometimes the sets of words are grouped into expressions, 

whereas rules and constraints may be formulated 

for the creation of 'well-formed expressions'.



Regular Language (3A) 17 Young Won Lim
6/9/18

Formal Language Examples (1)

https://en.wikipedia.org/wiki/Formal_language

The following rules describe 

a formal language L 

over the alphabet Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, = }:                         

● every nonempty string is in L

• that does not contain "+" or "=" 

• does not start with "0" 

● the string "0" is in L.

● a string containing "=" is in L

• if and only if there is exactly one "=", 

• and it separates two valid strings of L.

● a string containing "+" but not "=" is in L 

• if and only if every "+" in the string separates two valid strings of L.

● no string is in L other than those implied by the previous rules.
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Formal Language Examples (2)

https://en.wikipedia.org/wiki/Formal_language

Under these rules, 

the string "23+4=555" is in L, 

but the string "=234=+" is not. 

This formal language expresses 
● natural numbers, 
● well-formed additions, 
● and well-formed addition equalities, 

but it expresses only what they look like (their syntax), 

not what they mean (semantics). 

for instance, nowhere in these rules is 

there any indication that "0" means the number zero, 

or that "+" means addition.
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Formal Language Examples (3)

https://en.wikipedia.org/wiki/Formal_language

● L = Σ*, the set of all words over Σ;

● L = {"a"}* = {"a"n}, where n ranges over the natural numbers 

and "a"n means "a" repeated n times

(this is the set of words consisting only of the symbol "a");

● the set of syntactically correct programs in a given programming language 
(the syntax of which is usually defined by a context-free grammar);

● the set of inputs upon which a certain Turing machine halts; or

● the set of maximal strings of alphanumeric ASCII characters on this line, i.e., 
the set {"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII", 
"characters", "on", "this", "line", "i", "e"}.
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Formal Language Examples (4)

https://en.wikipedia.org/wiki/Formal_language

For instance, a language can be given as

● those strings generated by some formal grammar;

● those strings described or matched by a particular regular expression;

● those strings accepted by some automaton, 

such as a Turing machine or finite state automaton;

● those strings for which some decision procedure
produces the answer YES.

(an algorithm that asks a sequence of related YES/NO questions) 
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Formal Grammar Example

https://en.wikipedia.org/wiki/Formal_language

the alphabet consists of a and b, 
the start symbol is S, 
the production rules:

    1. S → aSb 
    2. S → ba 

then we start with S, and can choose a rule to apply to it. 
Application of rule 1, the string aSb. 
Another application of rule 1, the string aaSbb. 
Application of rule 2, the string aababb

The language of the grammar is then the infinite set  
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Syntax of Formal Grammars

https://en.wikipedia.org/wiki/Formal_language

a grammar G consists of the following components:

● A finite set N of nonterminal symbols, 

that is disjoint with the strings formed from G.

● A finite set Σ of terminal symbols 

that is disjoint from N.

● A finite set P of production rules, 

● A distinguished symbol S  ∈ N that is the start symbol, 
also called the sentence symbol.

A grammar is formally defined as the tuple (N ,Σ, P, S) 

often called a rewriting system 
or a phrase structure grammar 
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Terminal and Non-terminal Symbols

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Terminal symbols are the elementary symbols 
of the language defined by a formal grammar. 

Nonterminal symbols (or syntactic variables) 
are replaced by groups of terminal symbols 
according to the production rules.

A formal grammar includes a start symbol, 
a designated member of the set of nonterminals 
from which all the strings in the language 
may be derived by successive applications 
of the production rules.

In fact, the language defined by a grammar 
is precisely the set of terminal strings 
that can be so derived.
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Production Rules

https://en.wikipedia.org/wiki/Formal_language

        

Head → Body

● each production rule maps from one string of symbols to another

● the first string (the "head") contains 

● an arbitrary number of symbols 

● provided at least one of them is a nonterminal.  N

● If the second string (the "body") consists solely of the empty string

● i.e., that it contains no symbols at all

● it may be denoted with a special notation (Λ , e or )ϵ
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Grammar Examples (1)

https://en.wikipedia.org/wiki/Formal_language

Consider the grammar G 
where N = { S , B },  Σ = { a , b , c }, S is the start symbol, 
and P consists of the following production rules:

    1. S → aBSc
    2. S → abc 
    3. Ba → aB 
    4. Bb → bb

This grammar defines the language L(G) = {anbncn  n ≥ 1 }∣
where an denotes a string of n consecutive a's. 

Thus, the language is the set of strings that consist of 1 or more a's, 
followed by the same number of b's, followed by the same number of c's.
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Grammar Examples (2)

https://en.wikipedia.org/wiki/Formal_language

   1. S → aBSc
   2. S → abc 

3. Ba → aB
   4. Bb → bb
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Context Free Grammars

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Context-free grammars are those grammars 
in which the left-hand side of each production rule 
consists of only a single nonterminal symbol. 

This restriction is non-trivial; 
not all languages can be generated 
by context-free grammars. 

Those that can are called context-free languages. 

S → aSb 
S → ba 
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Context Free Grammar Examples

https://en.wikipedia.org/wiki/Formal_language

The language L(G) = {anbncn  n ≥ 1 } ∣ is not a context-free language
the grammar G 
where N = { S , B },  Σ = { a , b , c }, S is the start symbol, 
and P consists of the following production rules:

    1. S → aBSc
    2. S → abc 
    3. Ba → aB 
    4. Bb → bb

The language {anbn  n ≥ 1 }∣  is context-free
(at least 1 a followed by the same number of b)

the grammar G2 with N = { S }, Σ = { a , b }, S the start symbol, 
and P the following production rules:

    1. S → a S b 
    2. S → a b 
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Regular Expression Examples

https://en.wikipedia.org/wiki/Regular_expression

.at matches any three-character string 
ending with "at", including "hat", "cat", and "bat".

[hc]at matches "hat" and "cat".
[^b]at matches all strings matched by .at except "bat".
[^hc]at matches all strings matched by .at other than "hat" and "cat".
^[hc]at matches "hat" and "cat", but only at the beginning of the string or 
line.
[hc]at$ matches "hat" and "cat", but only at the end of the string or line.
\[.\] matches any single character surrounded by "[" and "]" 

since the brackets are escaped, for example: "[a]" and "[b]".
s.* matches s followed by zero or more characters, 

for example: "s" and "saw" and "seed".

[hc]?at matches "at", "hat", and "cat".
[hc]*at matches "at", "hat", "cat", "hhat", "chat", "hcat", "cchchat", ...
[hc]+at matches "hat", "cat", "hhat", "chat", "hcat", "cchchat",..., but not "at".
cat|dog matches "cat" or "dog".
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Chomsky's four types of grammars

https://en.wikipedia.org/wiki/Chomsky_hierarchy
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Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Unrestricted grammar

Type-0 grammars include all formal grammars. 

They generate exactly all languages 
that can be recognized by a Turing machine. 

These languages are also known 
as the recursively enumerable or 
Turing-recognizable languages. 

Note that this is different from the recursive languages,
which can be decided by an always-halting Turing machine.
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Type-0 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-sensitive grammar

Type-1 grammars generate the context-sensitive languages. 

These grammars have rules of the form α A β → α γ β 
with A a nonterminal and α, β, and γ strings of terminals 
and/or nonterminals. 

The strings α and β may be empty, but γ must be nonempty. 

The rule S →  is allowed ϵ
if S does not appear on the right side of any rule.

The languages described by these grammars are exactly 
all languages that can be recognized by a linear bounded automaton 
(a nondeterministic Turing machine 
whose tape is bounded by a constant times the length of the input.)
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Type-2 grammars

https://en.wikipedia.org/wiki/Regular_expression

Context-free grammar

Type-2 grammars generate the context-free languages. 

These are defined by rules of the form A → γ 
with A being a nonterminal and γ being a string of terminals and/or 
nonterminals. 

These languages are exactly all languages 
that can be recognized by a non-deterministic pushdown automaton. 

Context-free languages—or rather its subset of deterministic context-free 
language—are the theoretical basis for the phrase structure of most 
programming languages, though their syntax also includes context-
sensitive name resolution due to declarations and scope. 

Often a subset of grammars is used to make parsing easier, 
such as by an LL parser.
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Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Regular grammar

Type-3 grammars generate the regular languages. 

restricts its rules to a single nonterminal on the left-hand side 

a right-hand side consisting of a single terminal, 

possibly followed by a single nonterminal (right regular). 

the right-hand side consisting of a single terminal, 

possibly preceded by a single nonterminal (left regular). 
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Type-3 grammars (1)

https://en.wikipedia.org/wiki/Regular_expression

Right regular and left regular generate the same languages. 

However, if left-regular rules and right-regular rules are combined, 
the language need no longer be regular. 

The rule S →  is also allowed here ϵ
if S does not appear on the right side of any rule. 

These languages are exactly all languages 
that can be decided by a finite state automaton. 

Additionally, this family of formal languages 
can be obtained by regular expressions. 

Regular languages are commonly used 
to define search patterns and 
the lexical structure of programming languages.
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory
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Chomsky Hierarchy

https://en.wikipedia.org/wiki/Regular_language
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Machine (FSM) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine  Recursively Enumerable Language
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Regular Language

https://en.wikipedia.org/wiki/Regular_language

a regular language (a rational language) is 
a formal language that can be expressed 
using a regular expression, 
in the strict sense

Alternatively, a regular language can be defined 
as a language recognized by a finite automaton. 

The equivalence of regular expressions and 
finite automata is known as Kleene's theorem.

Regular languages are very useful 
in input parsing and programming language design.
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Regular Language – Formal Definition

https://en.wikipedia.org/wiki/Regular_language

The collection of regular languages over an alphabet Σ 
is defined recursively as follows:

The empty language Ø, and the empty string language {ε} 
are regular languages.

For each a  Σ (a belongs to Σ), ∈
the singleton language {a} is a regular language.

If A and B are regular languages, 
then A  B (∪ union), A • B (concatenation), 
and A* (Kleene star) are regular languages.

No other languages over Σ are regular.

See regular expression for its syntax and semantics. 
Note that the above cases are in effect the defining
rules of regular expression.
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Equivalent Formalism 

https://en.wikipedia.org/wiki/Regular_language

1. it is the language of a regular expression (by the above definition)

2. it is the language accepted by a nondeterministic finite automaton (NFA)

3. it is the language accepted by a deterministic finite automaton (DFA)

4. it can be generated by a regular grammar

5. it is the language accepted by an alternating finite automaton

6. it can be generated by a prefix grammar

7. it can be accepted by a read-only Turing machine
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Regular Language Example 

https://en.wikipedia.org/wiki/Regular_language

All finite languages are regular; 

in particular the empty string language {ε} = Ø* is regular. 

Other typical examples include the language 
consisting of all strings over the alphabet {a, b} 
which contain an even number of a’s, or 
the language consisting of all strings of the form: 
several as followed by several b’s.

A simple example of a language 
that is not regular is the set of strings { anbn | n ≥ 0 }.

Intuitively, it cannot be recognized with a finite automaton, 
since a finite automaton has finite memory
and it cannot remember the exact number of a's. 
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