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Simple Graph

https://en.wikipedia.org/wiki/Travelling_salesman_problem

A simple graph is an undirected graph 
without multiple edges or loops. 

the edges form a set (rather than a multiset)
each edge is an unordered pair of distinct vertices. 

can define a simple graph to be a set V of vertices 
together with a set E of edges, 

E are 2-element subsets of V

with n vertices, 
the degree of every vertex is at most n − 1
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Multi-Graph

https://en.wikipedia.org/wiki/Travelling_salesman_problem

A multigraph, as opposed to a simple graph, is an
undirected graph in which multiple edges (and 
sometimes loops) are allowed.
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Multiple Edges

https://en.wikipedia.org/wiki/Travelling_salesman_problem

● multiple edges
● parallel edges
● Multi-edges

are two or more edges 
that are incident to the same two vertices 

A simple graph has no multiple edges.
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Loop

https://en.wikipedia.org/wiki/Travelling_salesman_problem

● a loop
● a self-loop
● a buckle

is an edge that connects a vertex to itself. 

A simple graph contains no loops.



Graph Overview (1A) 29 Young Won Lim
5/11/18

Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

For a graph G= (V, E), a walk is defined as a sequence

of alternating vertices and edges such as 

where each edge 

The length of this walk is 

Edges are allowed to be repeated

v0, e1, v1, e2, ⋯ , ek , vk
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Open / Closed Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A walk is considered to be closed if the starting vertex is 
the same as the ending vertex. 

Otherwise open
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Trails

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A trail is defined as a walk with no repeated edges.
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Paths

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A path is defined as a open trail with no repeated vertices.
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Cycles

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A cycle is defined as a closed trail with no repeated
vertices except the start/end vertex
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Circuits

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A circuit is defined as a closed trail with possibly repeated
vertices but with no repeated edges
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Walk, Trail, Path, Circuit, Cycle

open walks closed walks

trails circuits

path cycle

ei ≠ e j ei ≠ e j

vi ≠ v j vi ≠ v j

v
0
≠ vk v

0
= vk
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Walk, Trail, Path, Circuit, Cycle

Vertices Edges

    Walk     may   may   (Closed/Open)
          repeat repeat

    Trail     may  cannot  (Open)
          repeat repeat 

    Path     cannot  cannot   (Open)
repeat repeat

    Circuit may  cannot   (Closed)
     repeat repeat 

    Cycle    cannot  cannot  (Closed)
         repeat repeat 

https://math.stackexchange.com/questions/655589/what-is-difference-between-cycle-path-and-circuit-in-graph-theory
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Path and Trail 

https://en.wikipedia.org/wiki/Eulerian_path

A path is a trail in which all vertices  are distinct. 
(except possibly the first and last) 

A trail is a walk in which all edges are distinct. 

Vertices Edges

    Walk     may   may   (Closed/Open)

repeat repeat

    Trail     may  cannot  (Open)

          repeat repeat 

    Path     cannot  cannot   (Open)

          repeat repeat 

    Circuit may  cannot   (Closed)

     repeat repeat 

Cycle cannot cannot (Closed)

         repeat repeat 
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Simple Paths and Cycles

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the edges and vertices of a 
path be distinct from one another. 

But, some do not require this and instead use the term simple 
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no 
repetitions of vertices and edges allowed, other than the 
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...
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Simple Paths and Cycles

path cycle
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Paths and Cycles

v0, e1, v1, e2, ⋯ , ek , vk
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

Some people reserve the terms path and cycle 
to mean non-self-intersecting path and cycle. 

A (potentially) self-intersecting path is known 
as a trail or an open walk; 

and a (potentially) self-intersecting cycle, 
a circuit or a closed walk. 

This ambiguity can be avoided by using the terms 
Eulerian trail and Eulerian circuit 
when self-intersection is allowed

no repeating vertices

repeating vertices

repeating vertices

repeating vertices
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian cycles 

all vertices in the graph have an even degree

connected graphs with all vertices of even degree h
ave an Eulerian cycles
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Euler Path

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian paths 

all the vertices in the graph have an even degree

except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices
An Eulerian cycle starts and ends at the same vertex.
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Conditions for Eulerian Cycles and Paths

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

An odd vertex = a vertex with an odd degree

An even vertex = a vertex with an even degree

# of odd vertices Eulerian Path Eulerian Cycle

0 No Yes 

2 Yes No

4,6,8, … No No 

1,3,5,7, … No such graph No such graph

If the graph is connected
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The number of odd vertices 

# of odd vertices Eulerian Path Eulerian Cycle

0 No Yes 

2 Yes No

No Eulerian Path No Eulerian Cycle

Eulerian Cycle  Eulerian Path

# of odd vertices 
= 0

# of odd vertices 
= 2
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Eulerian Graph

Eulerian graph :
a graph with an Eulerian cycle
a graph with every vertex of even degree
(the number of odd vertices is 0)

These definitions coincide for connected graphs.
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Odd Degree and Even Degree

https://en.wikipedia.org/wiki/Eulerian_path
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Euler Cycle Example 

en.wikipedia.org

ABCDEFGHIJK
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Euler Cycle Example

en.wikipedia.org
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Euler Path and Cycle Examples

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Eulerian Cycles of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian cycle 
if and only if every vertex has even degree, 
and all of its vertices with nonzero degree 
belong to a single connected component.

An undirected graph can be 
decomposed into edge-disjoint cycles 
if and only if all of its vertices have even degree. 

So, a graph has an Eulerian cycle 
if and only if it can be decomposed 
into edge-disjoint cycles
and its nonzero-degree vertices
belong to a single connected component.
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Edge Disjoint Cycle Decomposition
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Eulerian Paths of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian trail 
if and only if exactly zero or two vertices have odd degree, 
and all of its vertices with nonzero degree 
belong to a single connected component.
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Eulerian Cycles of DiGraphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian cycle 
if and only if every vertex has equal in degree and out degree, 
and all of its vertices with nonzero degree 
belong to a single strongly connected component. 

Equivalently, a directed graph has an Eulerian cycle 
if and only if it can be decomposed 
into edge-disjoint directed cycles 
and all of its vertices with nonzero degree 
belong to a single strongly connected component.
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Eulerian Paths of DiGraphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian path 
if and only if at most one vertex has (out-degree) − (in-degree) = 1, 
at most one vertex has (in-degree) − (out-degree) = 1, 
every other vertex has equal in-degree and out-degree, 
and all of its vertices with nonzero degree belong to a single connected 
component of the underlying undirected graph.
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Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

The problem was to devise a walk through the city that 
would cross each of those bridges once and only once.
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Seven and Eight Bridges Problems

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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Nine and Ten Bridges Problems

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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8 bridges – Eulerian Path

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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9 bridges – Eulerian Path 

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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10 bridges – Eulerian Cycle

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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Fleury’s Algorithm

To find an Eulerian path or an Eulerian cycle:

1. make sure the graph has either 0 or 2 odd vertices

2. if there are 0 odd vertex, start anywhere. 
If there are 2 odd vertices, start at one of the two vertices

3. follow edges one at a time. 
If you have a choice between a bridge and a non-bridge,
Always choose the non-bridge

4. stop when you run out of edge

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Bridges

A bridge edge

Removing a single edge from a connected graph 

can make it disconnected

Non-bridge edges

Loops cannot be bridges

Multiple edges cannot be bridges 

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Bridge examples in a graph

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Bridges must be avoided, if possible

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Fleury’s Algorithm (1)

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Fleury’s Algorithm (2)

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
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Fleury’s Algorithm (3)

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

B

E

DA C

F

FEACBDCFD

DB : bridge

DB : chosen

no other choice

B

E

DA C

F

FEACBDCFDB

BA : bridge

BA : chosen

no other choice

B

E

DA C

F



Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2] 



Young Won Lim
5/11/18

Hamiltonian Cycle (3A)
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

A Hamiltonian path is a path 
in an undirected or directed graph 
that visits each vertex exactly once. 

A Hamiltonian cycle is 
a Hamiltonian path that is a cycle. 

the Hamiltonian path problem is NP-complete.
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path



Hamiltonian Cycles (3A) 5 Young Won Lim
5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

● a complete graph with more than two vertices is Hamiltonian
● every cycle graph is Hamiltonian
● every tournament has an odd number of Hamiltonian paths 
● every platonic solid, considered as a graph, is Hamiltonian
● the Cayley graph of a finite Coxeter group is Hamiltonian 



Hamiltonian Cycles (3A) 7 Young Won Lim
5/11/18

Complete Graphs and Cycle Graphs 

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph
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Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph
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Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory
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Platonic Solid Graphs

https://en.wikipedia.org/wiki/Platonic_solid
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Hamiltonian Cycles – Properties (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

Any Hamiltonian cycle can be converted 
to a Hamiltonian path by removing one of its edges, 

but a Hamiltonian path can be extended to 
Hamiltonian cycle only if its endpoints are adjacent.

All Hamiltonian graphs are biconnected, but a 
biconnected graph need not be Hamiltonian
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Biconnected Graph

https://en.wikipedia.org/wiki/Biconnected_graph

a biconnected graph is a connected and "nonseparable" 
graph, meaning that if any one vertex were to be 
removed, the graph will remain connected. 

a biconnected graph has no articulation vertices.

The property of being 2-connected is equivalent to 
biconnectivity, with the caveat that the complete graph 
of two vertices is sometimes regarded as biconnected
but not 2-connected.
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Biconnected Graph Examples

https://en.wikipedia.org/wiki/Biconnected_graph
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Eulerian Graph

An Eulerian graph G :
a connected graph in which 
every vertex has even degree 

An Eulerian graph G necessarily has an Euler cycle, 
a closed walk passing through each edge of G exactly once. 

4 4

4

2

4

4

B

E
D

A

C

B

E
D

A

C

2 6

4

4
2

2 4

4
2



Hamiltonian Cycles (3A) 15 Young Won Lim
5/11/18

Eulerian Graph (1)

B

D E

A

C

Eulerian Cycle
ABCDECA
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D E
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C
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3

1

6

5 3

6 2

5

4

1

G L(G)

Hamiltonian Cycle
1-2-3-4-5-6-1

The Eulerian cycle corresponds to a Hamiltonian cycle in 
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph. 



Hamiltonian Cycles (3A) 16 Young Won Lim
5/11/18

Eulerian Graph (2)

B

D E
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C

Eulerian Cycle
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4

1

G L(G)

Hamiltonian Cycle
1-2-5-4-3-6-1

The Eulerian cycle corresponds to a Hamiltonian cycle in 
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph. 
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Eulerian Path  (1)

G L(G)
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24 3
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24 3

Eulerian Path
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Hamiltonian Path
1-2-3-4-5
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D C

A
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234
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The Eulerian path corresponds to a Hamiltonian path in the 
line graph L(G)



Hamiltonian Cycles (3A) 18 Young Won Lim
5/11/18

Eulerian Path (2)

Eulerian Path
FEACBDCFDBA

G L(G)

Hamiltonian Path
1-2-3-4-5-6-7-8-9-10

Line graphs may have other Hamiltonian cycles that do not 
correspond to Euler cycles.
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Eulerian Path (3)

Eulerian Cycle X
Eulerian Path   X

G L(G)

Hamiltonian Cycle
1-7-3-6-8-5-4-9-10-2-1

Line graphs may have other Hamiltonian cycles that do not 
correspond to Euler cycles.
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Hamiltonian Cycles – Properties (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

This Eulerian cycle corresponds to a Hamiltonian cycle in 
the line graph L(G), so the line graph of every Eulerian 
graph is Hamiltonian graph. 

Line graphs may have other Hamiltonian cycles that do not 
correspond to Euler paths.

The line graph L(G) of every Hamiltonian graph G is itself 
Hamiltonian, regardless of whether the graph G is Eulerian.
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Line Graphs

https://en.wikipedia.org/wiki/Line_graph

In the mathematical discipline of graph theory, the line graph 
of an undirected graph G is another graph L(G) that 
represents the adjacencies between edges of G.

Given a graph G, its line graph L(G) is a graph such that

● each vertex of L(G) represents an edge of G; and
● two vertices of L(G) are adjacent if and only if their 

corresponding edges share a common endpoint ("are 
incident") in G.

That is, it is the intersection graph of the edges of G, 
representing each edge by the set of its two endpoints.
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Line Graphs Examples

https://en.wikipedia.org/wiki/Line_graph
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Hamiltonian Cycles – Properties (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

A tournament (with more than two vertices) is Hamiltonian if and 
only if it is strongly connected.

The number of different Hamiltonian cycles 
in a complete undirected graph on n vertices is (n − 1)! / 2 
in a complete directed graph on n vertices is (n − 1)!. 

These counts assume that cycles that are the same apart from 
their starting point are not counted separately.
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Strongly Connected Component

https://en.wikipedia.org/wiki/Hamiltonian_path

a directed graph is said to be strongly connected or 
diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected 
components of an arbitrary directed graph form a partition into 
subgraphs that are themselves strongly connected. 
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Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path

 the dual graph of a plane graph G is a graph 
that has a vertex for each face of G. 

The dual graph has an edge whenever two 
faces of G are separated from each other by an 
edge, 

and a self-loop when the same face appears on 
both sides of an edge.

each edge e of G has a corresponding dual 
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.
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Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path
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Shortest Path Problem

https://en.wikipedia.org/wiki/Shortest_path_problem

the shortest path problem is the problem of finding a path 
between two vertices (or nodes) in a graph such that the 
sum of the weights of its constituent edges is minimized.
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Types of Shortest Path Problems

https://en.wikipedia.org/wiki/Shortest_path_problem

The single-pair shortest path problem:
to find shortest paths from a source vertex v to a 
destination vertex w in a graph

The single-source shortest path problem:
to find shortest paths from a source vertex v to all other 
vertices in the graph.

The single-destination shortest path problem:
to find shortest paths from all vertices in the directed 
graph to a single destination vertex v. This can be 
reduced to the single-source shortest path problem by 
reversing the arcs in the directed graph.

The all-pairs shortest path problem:
to find shortest paths between every pair of vertices v, v' 
in the graph.
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Dijkstra’s Algorithm Example Summary

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

the current node

the initial node

the visited nodes
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Dijkstra’s Algorithm Example (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Dijkstra’s Algorithm Example (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Dijkstra’s Algorithm Example (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Dijkstra’s Algorithm Example (4)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Dijkstra’s Algorithm Example (5)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Dijkstra’s Algorithm (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Let the node at which we are starting 
be called the initial node. 
Let the distance of node Y be 
the distance from the initial node to Y. 
Dijkstra's algorithm will assign some initial distance 
values and will try to improve them step by step.

1.    Mark all nodes unvisited. 
Create a set of all the unvisited nodes called the 
unvisited set.

2.    Assign to every node a tentative distance value: 
set it to zero for our initial node and 
to infinity for all other nodes. 
Set the initial node as current.
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Dijkstra’s Algorithm (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

3. Remove the current node from the unvisited set

For all the unvisited neighbors of the current node,  
calculate their tentative distances 
through the current node. 

Compare the newly calculated tentative distance to the 
current assigned value and assign the smaller one. 

For example, if the current node A is marked with a 
distance of 6, and the edge connecting it with a neighbor 
B has length 2, then the distance to B through A will be 6 
+ 2 = 8. If B was previously marked with a distance 
greater than 8 then change it to 8. Otherwise, keep the 
current value.

A

6 B2

8

I

Initial 
node

current 
node

an unvisited 
neighbor

Newly calculated 
tentative distance 
through the current node 
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Dijkstra’s Algorithm (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

4. After considering all of the neighbors of the current 
node, mark the current node as visited and remove it
from the unvisited set. A visited node will never be 
checked again.

A

6 B2

8

I

Initial 
node

current 
node

C

D

3

4

9

10

current node : chosen 
node with the smallest 
tentative distance from 
the unvisited set

current node : move to the 
visited set, after calculating 
the tentative distances of all 
the neighbors of the current 
node 

consider all the neighbors of 
the current node
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Dijkstra’s Algorithm (4)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

5. Move to the next unvisited node with the smallest 
tentative distances and repeat the above steps which 
check neighbors and mark visited.
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Dijkstra’s Algorithm (5)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

5-a. If the destination node has been marked visited 
(when planning a route between two specific nodes)

or if the smallest tentative distance among the nodes in 
the unvisited set is infinity (when planning a complete 
traversal; occurs when there is no connection between 
the initial node and remaining unvisited nodes), 

then stop. The algorithm has finished.

5-b. Otherwise, select the unvisited node that is marked 
with the smallest tentative distance, 
set it as the new current node, and go back to step 3.
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Dijkstra’s Algorithm – Pseudocode 1

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             // Initialization
 6          dist[v] ← INFINITY                  // Unknown distance from source to v
 7          prev[v] ← UNDEFINED            // Previous node in optimal path from source
 8          add v to Q                          // All nodes initially in Q (unvisited nodes)
 9
10      dist[source] ← 0                        // Distance from source to source
11      
12      while Q is not empty:
13 u ← vertex in Q with min dist[u] // Node with the least distance
14                                                     // will be selected first
15          remove u from Q 
16          
17          for each neighbor v of u:           // where v is still in Q.   for each v in Q:
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               // A shorter path to v has been found
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]
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Dijkstra’s Algorithm – Pseudocode 2

Discrete Mathematics and It’s Applications, K. H. Rosen

Procedure Dijkstra(G: weighted connected simple graph, with all positive weights)

{G has vertices a = v
0
, v

1
, …, v

n
 = z and length w(v

i
, v

j
)

 where w(v
i
, v

j
) = ∞  if {v

i
, v

j
} is not an edge in G}

for i := 1 to n 

L(v
i
) := ∞

L(a) := 0

S := { }

{the labels are now initialized so that the label of a is 0 and 

All other labels are ∞, and S is the empty set}

while z  S∉
u := a vertex not in S with L(u) minimal

S := S  {∪ u}

for all vertices v not in S

if L(u) +w(u,v) < L(u) then L(v) := L(u) + w(u,v)

{this adds a vertex to S with minimal label and 

updates the labels of vertices not in S}

return L(z) {L(z) = length of a shortest path from a to z}
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Dijkstra Algorithm Pseudocode 2 Example (0)

Discrete Mathematics and It’s Applications, K. H. Rosen
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Dijkstra Algorithm Pseudocode 2 Example (1)

Discrete Mathematics and It’s Applications, K. H. Rosen
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∞
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4 ∞

2 ∞

∞

S={a}

L(a)+w (a ,b)=0+4 < L(b)=∞

L(a)+w (a ,c )=0+2 < L(c )=∞

L(a)+w (a ,d)=0+∞ = L(d )=∞

L(a)+w (a ,e)=0+∞ = L(e )=∞

L(a)+w (a , z)=0+∞ = L(z)=∞
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Dijkstra Algorithm Pseudocode 2 Example (2)

Discrete Mathematics and It’s Applications, K. H. Rosen

4

e

d

za

c

b

2

1

5

8
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6

3

2

0

4 ∞

2 ∞

∞

S={a, c}

L(c)+w (c ,b)=2+1 < L(b)=4

L(c)+w (c ,d)=2+8 < L(d)=∞

L(c)+w (c ,e )=2+10 < L(e )=∞

L(c)+w (c , z)=2+∞ = L(z)=∞
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Dijkstra Algorithm Pseudocode 2 Example (3)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b}

L(b)+w (b ,d)=3+5 < L(d)=10

L(b)+w (b ,e)=3+∞ > L(e)=12

L(b)+w (b , z)=3+∞ = L(z)=∞
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P(a ,c , b , d) < P(a ,c , d)
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Dijkstra Algorithm Pseudocode 2 Example (4)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b ,d }

L(d)+w (d , e)=8+2 < L(e )=12

L(d)+w (d , z)=8+6 < L(z )=∞
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P(a ,c , b , d , e) < P(a ,c , e)
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Dijkstra Algorithm Pseudocode 2 Example (5)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b ,d ,e}

L(e)+w(e , z )=10+3 < L(z)=14
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P(a ,c , b , d , e , z) < P(a ,c , b , d , z )
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Dijkstra Algorithm Pseudocode 2 Example (6)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b ,d ,e , z}
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Minimum Spanning Tree 

https://en.wikipedia.org/wiki/Minimum_spanning_tree

a subset of the edges of a connected, edge-weighted 
(un)directed graph that connects all the vertices 
together, without any cycles and with the minimum 
possible total edge weight. 

a spanning tree whose sum of edge weights is as small 
as possible. 

More generally, any edge-weighted undirected graph (not 
necessarily connected) has a minimum spanning forest, 
which is a union of the minimum spanning trees for its 
connected components.
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Types of Shortest Path Problems

https://en.wikipedia.org/wiki/Minimum_spanning_tree
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Properties (1)

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Possible multiplicity
If there are n vertices in the graph, 
then each spanning tree has n−1 edges. 

Uniquenss
If each edge has a distinct weight 
then there will be only one, unique minimum spanning tree. 
this is true in many realistic situations

Minimum-cost subgraph
If the weights are positive, then a minimum spanning tree is 
in fact a minimum-cost subgraph connecting all vertices, 
since subgraphs containing cycles necessarily have more 
total weight.
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Properties (2)

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Cycle Property
For any cycle C in the graph, if the weight of an edge e of C 
is larger than the individual weights of all other edges of C, 
then this edge cannot belong to a MST. 

Cut property
For any cut C of the graph, if the weight of an edge e in the 
cut-set of C is strictly smaller than the weights of all other 
edges of the cut-set of C, then this edge belongs to all
MSTs of the graph. 
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Properties (3)

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum-cost edge
If the minimum cost edge e of a graph is unique, then this 
edge is included in any MST. 

Contraction
If T is a tree of MST edges, then we can contract T into a 
single vertex while maintaining the invariant that the MST of 
the contracted graph plus T gives the MST for the graph 
before contraction.
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Cut property examples

https://en.wikipedia.org/wiki/Minimum_spanning_tree
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Borůvka's algorithm

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Input: A graph G whose edges have distinct weights
Initialize a forest F to be a set of one-vertex trees, 
  one for each vertex of the graph.
While F has more than one component:
   Find the connected components of F and 
   label each vertex of G by its component
   Initialize the cheapest edge for each component to "None"
   For each edge uv of G:
     If u and v have different component labels:
       If uv is cheaper than the cheapest edge 

for the component of u:
         Set uv as the cheapest edge for the component of u
       If uv is cheaper than the cheapest edge 
          for the component of v:
         Set uv as the cheapest edge for the component of v
    For each component whose cheapest edge 
      is not "None":
      Add its cheapest edge to F
  Output: F is the minimum spanning forest of G.
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Borůvka's algorithm examples (1)

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
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Borůvka's algorithm examples (2)

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
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Borůvka's algorithm examples (3)

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
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Borůvka's algorithm examples (4)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf
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Kruskal's algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

KRUSKAL(G):
1 A = ∅
2 foreach v  G.V:∈
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6       A = A  {(u, v)}∪
7       UNION(u, v)
8 return A

Scan all edges in increasing weight order; if an edge is safe, add it to A
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Kruskal's algorithm examples (1)

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}
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Kruskal's algorithm examples (2)

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}
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Kruskal's algorithm examples (3)

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}
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Kruskal's algorithm examples (4)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf
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Prim's algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm

a greedy algorithm that finds a minimum spanning tree 
for a weighted undirected graph. 

operates by building this tree one vertex at a time, 
from an arbitrary starting vertex, 
at each step adding the cheapest possible connection 
from the tree to another vertex.

Repeatedly add a safe edge to the tree

1.  Initialize a tree with a single vertex, 
chosen arbitrarily from the graph.

2.    Grow the tree by one edge: 
of the edges that connect the tree to vertices 
not yet in the tree, find the minimum-weight edge, 
and transfer it to the tree.

3.    Repeat step 2 (until all vertices are in the tree).
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Prim's algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm

1.  Associate with each vertex v of the graph 
a number C[v] (the cheapest cost of a connection to v)
and an edge E[v] (the cheapest edge). 
Initial values: C[v] = +∞,  E[v] = flag for no connection

2.    Initialize an empty forest F and a set Q of vertices 
that have not yet been included in F 

3.    Repeat the following steps until Q is empty:
       a. Find and remove a vertex v from Q 

having the minimum possible value of C[v]
       b. Add v to F and, if E[v] is not the special flag value, 

    also add E[v] to F
       c. Loop over the edges vw connecting v to other
    vertices w. For each such edge, if w still belongs to Q
    and vw has smaller weight than C[w], 

   perform the following steps:
              I)  Set C[w] to the cost of edge vw
              II) Set E[w] to point to edge vw.
    Return F
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Prim's algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Prim's algorithm starting at vertex A. 
In the third step, edges BD and AB both have weight 2, 
so BD is chosen arbitrarily. 
After that step, AB is no longer a candidate for addition to 
the tree because it links two nodes 
that are already in the tree.
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Prim's algorithm examples (1)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim

{5,6, 9,15}
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Prim's algorithm examples (2)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim
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Prim's algorithm examples (3)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim
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Prim's algorithm examples (4)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + * 

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D – 
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Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + * 

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D – 

+

A B

+

A B

*

C +

B C

*

A /

C D

+

/

A B

D

A B

–

*

+ C
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In-Order, Pre-Order, Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Pre-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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In-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Tree Traversal 

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order
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Pre-Order

https://en.wikipedia.org/wiki/Morphism

pre-order function 
    Check if the current node is empty / null.
    Display the data part of the root (or current node).
    Traverse the left subtree by recursively calling the pre-order function.
    Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order post-order

in-order
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In-Order

https://en.wikipedia.org/wiki/Morphism

in-order function
    Check if the current node is empty / null.
    Traverse the left subtree by recursively calling the in-order function.
    Display the data part of the root (or current node).
    Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order post-order

in-order
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Post-Order

https://en.wikipedia.org/wiki/Morphism

post-order function
    Check if the current node is empty / null.
    Traverse the left subtree by recursively calling the post-order function.
    Traverse the right subtree by recursively calling the post-order function.
    Display the data part of the root (or current node).

ACEDBHIGH

pre-order post-order

in-order
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Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
  if (node = null)
    return
  inorder(node.left)
  visit(node)
  inorder(node.right)

preorder(node)
  if (node = null)
    return

visit(node)
  preorder(node.left)
  preorder(node.right)

postorder(node)
  if (node = null)
    return
  postorder(node.left)

postorder(node.right)
  visit(node)
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Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
  s ← empty stack

  while (not s.isEmpty() or 
    node ≠ null)

    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      node ← s.pop()
      visit(node)

node ← node.right

iterativePreorder(node)
  if (node = null)

return
  s ← empty stack
  s.push(node)

while (not s.isEmpty())
    node ← s.pop()
    visit(node)
    // right child is pushed first 
    // so that left is processed first
    if (node.right ≠ null)
      s.push(node.right)
    if (node.left ≠ null)
      s.push(node.left)

iterativePostorder(node)
  s ← empty stack
  lastNodeVisited ← null

  while (not s.isEmpty() or node ≠ null)
    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      peekNode ← s.peek()
      // if right child exists and traversing

// node from left child, then move right
      if (peekNode.right ≠ null and 

lastNodeVisited ≠ peekNode.right)
        node ← peekNode.right
      else
        visit(peekNode)
        lastNodeVisited ← s.pop()
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Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
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Queue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
g
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Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search) BFS (Breadth First Search)
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DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search)A recursive implementation of DFS:

  procedure DFS(G,v):
      label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
          if vertex w is not labeled as discovered then
              recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

  procedure DFS-iterative(G,v):
      let S be a stack
      S.push(v)
      while S is not empty
          v = S.pop()
          if v is not labeled as discovered:
              label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
                  S.push(w)
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Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search) BFS (Breadth First Search)
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BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):
    
    create empty set S
    create empty queue Q      

    add root to S
Q.enqueue(root)  

    while Q is not empty:
        current = Q.dequeue()
        if current is the goal:
            return current
        for each node n that is adjacent to current:

if n is not in S:
                add n to S
                n.parent = current
                Q.enqueue(n)
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In-Order

Rosen 

n o p

j k

e f

b c d

a

g h i

l m

pre-order post-order

in-order

pre-order post-order

in-order



Tree (10A) 23 Young Won Lim
5/11/18

Ternary Tree 

Rosen

n o p

j k

e f

b c d

a

g h i

l m

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i
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In-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i
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Post-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a



Tree (10A) 26 Young Won Lim
5/11/18

Ternary 

Ternary 

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
    Made up of three things; treble, triadic, triple, triplex
    Arranged in groups of three
    (mathematics) To the base three [quotations ▼]
    (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word 
relating to the number eleven but there is one that relates to the number twelve: 
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary
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