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GCD

https://en.wikipedia.org/wiki/Greatest_common_divisor

A 24-by-60 rectangle is covered 
with ten 12-by-12 square tiles, 
where 12 is the GCD of 24 and 60. 

24 = 2 · 12 12 | 24   24 mod 12 = 0
60 = 5 · 12       12 | 60 60 mod 12 = 0

More generally, an a-by-b rectangle can be covered with 
square tiles of side-length d only if d is a common divisor of 
a and b

d | a
d | b 

d : common divisor

the largest d : gcd

 (greatest common divisor) 
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LCM

https://en.wikipedia.org/wiki/Least_common_multiple

What is the LCM of 4 and 6?

Multiples of 4 are:

    4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, ...

and the multiples of 6 are:

    6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ...

Common multiples of 4 and 6 are simply the numbers that are in both lists:

    12, 24, 36, 48, 60, 72, ....

So, from this list of the first few common multiples of the numbers 4 and 6, their least common 
multiple is 12.
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GCD * LCM

a = p1
a1⋅ p2

a2⋅⋯⋅ pn
an

b = p1
b1⋅ p2

b2⋅⋯⋅ pn
bn

gcd (a ,b) = p1
min(a1,b1)⋅ p2

min(a2,b2)⋅⋯⋅ pn
min(an ,bn)

lcm(a ,b) = p1
Max(a1,b1)⋅ p2

Max (a2,b2)⋅⋯⋅ pn
Max(an , bn)

gcd (a,b)⋅lcm(a ,b) = p1
a1+b1⋅ p2

a2+b2⋅⋯⋅ pn
an+bn = a⋅b

Prime Factorization
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Finding common unit length

https://en.wikipedia.org/wiki/Euclidean_algorithm

Euclid's method for finding 
the greatest common divisor (GCD) 
of two starting lengths BA and DC, 
both defined to be multiples of 
a common "unit" length. 

The length DC being shorter, 
it is used to "measure" BA, 
but only once because remainder EA is less than DC. 

EA now measures (twice) the shorter length DC, with 
remainder FC shorter than EA. 

Then FC measures (three times) length EA. 

Because there is no remainder, 
the process ends with FC being the GCD. 

On the right Nicomachus' example with numbers 49 
and 21 resulting in their GCD of 7 (derived from 
Heath 1908:300).
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Euclid Algorithm Steps

https://en.wikipedia.org/wiki/Euclidean_algorithm

remainder

remainder

zero

divisor divisor gcddivisor
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Euclid Algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm

1071 = 2 · 462 + 147

462 =  3 · 147 + 21

147 = 7  ·  21 + 0

1071 = 32
⋅7⋅17

462 = 2⋅3⋅7⋅11

gcd (1071,462) = 3⋅7 = 21
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Common Divisor

https://en.wikipedia.org/wiki/Euclidean_algorithm

1071 = 2 · 462 + 147

462 =  3 · 147 + 21

147 = 7  ·  21 + 0

common divisor d

d | 1071 and d | 462

1071  mod d = 0 d | 1071
  462  mod d = 0 d | 462 
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Common Divisor Properties

https://en.wikipedia.org/wiki/Euclidean_algorithm

1071 = 2 · 462 + 147

(2 · 462 + 147) mod d = 0

2 · (462 mod d)  + 147 mod d = 0

2 · 0 + 147 mod d = 0

147 mod d = 0

1071  mod d = 0

462  mod d = 0d | 1071 and d | 462

d | 462 and d | 147

remainder

147 mod d = 0

1071  mod d = 0 and

462  mod d = 0

common divisor d?
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Reducing GCD Problems

https://en.wikipedia.org/wiki/Euclidean_algorithm

1071 = 2 · 462 + 147

462 =  3 · 147 + 21

147 = 7  ·  21 + 0

gcd (1071, 462)

gcd (462,147)

gcd (147,21)

d | 1071 and d | 462

d | 462 and d | 147

d | 147 and d | 21

1071 

462 

147

21 
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Linear Combination of gcd(1071, 462)=21

https://en.wikipedia.org/wiki/Euclidean_algorithm

1071 = 2 · 462 + 147

462 =  3 · 147 + 21

147 = 7  ·  21 + 0

1071 – 2 · 462 = 147

462 – 3 · 147 = 21

 

462 – 3 · (1071 – 2 · 462 ) = 21

7 · 462 – 3 · 1071 = 21

gcd(1071, 462) = 21 
=  – 3 · 1071 + 7 · 462  

gcd (a ,b)= sa + t b
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Linear Combination of gcd(252, 198)=18

https://en.wikipedia.org/wiki/Euclidean_algorithm

252 = 1 · 198 + 54

198 = 3 · 54 + 36

54 = 1  · 36 + 18

36 = 2 · 18

gcd (a ,b)= sa + t b

252 –  1 · 198 = 54

198 –  3 · 54   = 36

54 –  1  · 36 = 18

(252 – 1 · 198) – 1 · (198 – 3 · (252 – 1 · 198)) = 18
252 – 1 · 198 – (4 · 198 – 3 · 252) = 18  
4 · 252 – 5 · 198  = 18  
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Bezout’s Identity – gcds as linear combinations

https://en.wikipedia.org/wiki/Euclidean_algorithm

x a + y b = gcd (a ,b)

a , b ∈ Z+

∃ x ,∃ y ∈ Z Bezout’s coefficients   (not unique)

Bezout’s identities

Generally, a linear combination of a & b 
must be unique and its coefficients x & y 
need not be integers. 
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Pairs of Bézout Coefficients Examples

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

42 = 3 · 12 + 6

12 = 2 · 6  

42 –  3 · 12 = 6

(1 · 42 – 3 · 12)  = 6
( -3 · 12 + 1 · 42)  = 6

x a + y b = gcd (a ,b)

x⋅12 + y⋅42 = gcd (12, 42)

Generally, x & y are not unique 

unless a & b are relatively prime



Numbers (8A) 16 Young Won Lim
6/21/17

Pairs of Bézout Coefficients – not unique 

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

-10  3

  -3  1

   4 -1

  11 -3

  18 -5 

+7

+7

+7

+7

+2

+2

+2

+2

42/6=7

|-3| < |7|
|4|  < |7|
 

12/6=2 

|1|  < |2|
|-1| < |2|
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Pairs of Bézout Coefficients – 2 minimal pairs 

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

Among these pairs of Bézout 
coefficients, exactly two of them satisfy

|-3| < |7|
|4|  < |7|
 

|1|  < |2|
|-1| < |2|

The Extended Euclidean Algorithm always 
produces one of these two minimal pairs.

x a + y b = gcd (a,b)

42/6=7 12/6=2
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Pairs of Bézout Coefficients – all pairs 

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

-3 + 7k 1 + 2k 

The Extended Euclidean Algorithm always 
produces one of these two minimal pairs.

x a + y b = gcd (a,b)

42/6=7 12/6=2

all pairs can be represented in the form
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Extended Euclid Algorithm

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Given a & b, the extended Euclid algorithm produce the same coefficients.
Uniquely, one is chosen among many possible Bézout’s coefficients
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Relatively Prime Numbers

gcd (a ,n) = 1 Relatively prime numbers a & n

s a + t n = 1
s a + t n ≡ 1 (mod n) t n mod n = 0

s a ≡ 1 (mod n)

ā a ≡ 1 (mod n)

the inverse of a exists : s linear combination of gcd(a, n)=1
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Finding an modulo inverse 

gcd (a ,n) = 1

Relatively prime numbers a & n

s a + t n ≡ 1 (mod n)

Finding an inverse of a modulo n

Euclid Algorithm 

Linear Combination

The inverse of a  →  s s a ≡ 1 (mod n)
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Linear Combination of gcd(101, 4620)=1

From Rosen’s book 

4620 = 45 · 101 + 75

101 = 1 · 75 + 26

75 = 2  · 26 + 23

26 = 1 · 23 + 3

23 = 7  · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1

4620 – 45 · 101 = 75

101 – 1 · 75 = 26

75 – 2  · 26 = 23

26 – 1 · 23 = 3

23 – 7  · 3 = 2

3 – 1 · 2 = 1

26·101–35·(4620–45·101) = –35·4620+1601·101

–9·75+26·(101–1·75) = 26·101–35·75

8·26–9·(75–2·26) = –9·75+26·26

–1·23+8·(26–1·23) = 8·26–9·23

3 – (23 – 7·3) = –1·23+8·3

3 – 1 · 2 = 1
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 Inverse of 101 modulo 4620

–35·4620 + 1601·101 = 1 

1601
4620 = 45 · 101 + 75

1601·101 = 1 (mod 4620) 

1601 is an inverse of 101 modulo 4620
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Congruence

https://en.wiktionary.org/wiki/congruence

Etymology

Middle English, from Latin congruentia (“agreement”), from 
congruēns, present active participle of congruō (“meet together, 
agree”).

Noun: congruence (plural congruences)

The quality of agreeing or corresponding; being suitable and 
appropriate.

(mathematics, number theory) A relation between two numbers 
indicating they give the same remainder when divided by some 
given number.

    
(mathematics, geometry) The quality of being isometric — 
roughly, the same measure and shape.

    
(algebra) More generally: any equivalence relation defined on an 
algebraic structure which is preserved by operations defined by 
the structure.
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Congruence in Geometry

https://en.wikipedia.org/wiki/Congruence_(geometry)

congruent
similar

congruent
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Congruent modulo n 

a ≡ b (mod n) a is congruent to b modulo n 

(a − b) mod n = 0

n ∣ (a − b) n divides (a-b)  

(a mod n) = (b mod n) the same remainder

A remainder is positive (0, .. n-1)
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Congruence Relation

https://en.wikipedia.org/wiki/Modular_arithmetic
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Properties of a Congruence Relation

https://en.wikipedia.org/wiki/Modular_arithmetic
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Remainders

https://en.wikipedia.org/wiki/Modular_arithmetic
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Linear Congruence Problems

a x ≡ b (mod n) A linear congruence

a x = b A linear equation 

A remainder is positive (0, .. n-1)

find x = ?

find x = ?
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Modular Multiplicative Inverse 

a x ≡ b (mod n)

A linear congruence

a x = b

A linear equation 

A remainder is positive (0, .. n-1)

a−1a x = a−1b
x = a−1b

a−1a = 1

ā a x ≡ ā b (mod n)
x ≡ ā b (mod n)

ā a ≡ 1 (mod n)
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Chinese Remainder Theorem

https://en.wikipedia.org/wiki/Chinese_remainder_theorem

Sunzi's original formulation: 
x 
≡ 2 (mod 3) 
≡ 3 (mod 5) 
≡ 2 (mod 7) 
with the solution 
x = 23 + 105k where k  ∈ ℤ

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

and

and
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Chinese Remainder Theorem

https://en.wikipedia.org/wiki/Chinese_remainder_theorem

x ≡ a1 (mod m1) and

x ≡ a2 (mod m2) and

x ≡ an (mod mn)

x ≡ b (mod m1m2⋯mn)

m1 , m2 , ⋯ mn

pairwise relatively prime

has a unique solution
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m
i
, m, and M

i

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

m = 3⋅5⋅7 = 105

M 1 = m/m1 = 3⋅5⋅7 /3 = 35
M 2 = m /m2 = 3⋅5⋅7/5 = 21
M 3 = m /m3 = 3⋅5⋅7/7 = 15

m1 = 3
m2 = 5
m3 = 7

M 1 = m/m1 = m2m3

M 2 = m /m2 = m1m3

M 3 = m /m3 = m1m2

m = m1m2m3

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)

M 1 mod m2 = M1 mod m3 = 0
M 2 mod m1 = M2 mod m3 = 0
M 3 mod m1 = M3 mod m2 = 0

M i mod m j = M j mod mi = 0

for i≠ j



Numbers (8A) 35 Young Won Lim
6/21/17

Inverse of M
i

M 1⋅y1 = 1 (mod m1)

M 2⋅y2 = 1 (mod m2)

M 3⋅y3 = 1 (mod m3)

M 1⋅y1 = 1 (mod m1)

M 2⋅y2 = 0 (mod m1)

M 3⋅y3 = 0 (mod m1)

M 1⋅y1 = 0 (mod m2)

M 2⋅y2 = 1 (mod m2)

M 3⋅y3 = 0 (mod m2)

M 1⋅y1 = 0 (mod m3)

M 2⋅y2 = 0 (mod m3)

M 3⋅y3 = 1 (mod m3)

y1 : the inverse of M1

y2 : the inverse of M 2

y3 : the inverse of M 3

m1 , m2 , m3 : pairwise relatively coprime

gcd (M1 , m1)= 1

gcd (M2 , m2) = 1

gcd (M3 , m3) = 1

m2m3

m1m3

m1m2

m2m3

m1m3

m1m2
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Sum of a
i
M

i
y

i

M 1⋅y1 = 1 (mod m1)

M 2⋅y2 = 0 (mod m1)

M 3⋅y3 = 0 (mod m1)

M 1⋅y1 = 0 (mod m2)

M 2⋅y2 = 1 (mod m2)

M 3⋅y3 = 0 (mod m2)

M 1⋅y1 = 0 (mod m3)

M 2⋅y2 = 0 (mod m3)

M 3⋅y3 = 1 (mod m3)

a1

a2

a3

a1 M1⋅y1 = a1 (mod m1)

a2 M 2⋅y2 = 0 (mod m1)

a3 M 3⋅y3 = 0 (mod m1)

a1 M1⋅y1 = 0 (mod m2)

a2 M 2⋅y2 = a2 (mod m2)

a3 M 3⋅y3 = 0 (mod m2)

a1 M1⋅y1 = 0 (mod m3)

a2 M 2⋅y2 = 0 (mod m3)

a3 M 3⋅y3 = a3 (mod m3)

a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3 = a1 M1⋅y1 = a1 (mod m1)

a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3 = a2 M2⋅y2 = a2 (mod m2)

a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3 = a3 M3⋅y3 = a3 (mod m3)
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X = Sum of a
i
M

i
y

i

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)

a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3 = a1 M1⋅y1 = a1 (mod m1)

a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3 = a2 M2⋅y2 = a2 (mod m2)

a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3 = a3 M3⋅y3 = a3 (mod m3)

x = a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3
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Chinese Remainder  Examples (1)

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

3⋅5⋅7 = 105 = m

M 1 = m/m1 = 3⋅5⋅7 /3 = 35
M 2 = m /m2 = 3⋅5⋅7/5 = 21
M 3 = m /m3 = 3⋅5⋅7/7 = 15

M 1⋅y1 = 35⋅2 = 2⋅2 = 1 (mod 3)

M 2⋅y2 = 21⋅1 = 1⋅1 = 1 (mod 5)

M 3⋅y3 = 15⋅1 = 1⋅1 = 1 (mod 7)

M 1 = 2 (mod m1)

M 2 = 0 (mod m1)

M 3 = 0 (mod m1)

M 1 = 0 (mod m2)

M 2 = 1 (mod m2)

M 3 = 0 (mod m2)

M 1 = 0 (mod m3)

M 2 = 0 (mod m3)

M 3 = 1 (mod m3)

m1 = 3
m2 = 5
m3 = 7

M 1⋅y1 = 1 (mod m1)

M 2⋅y2 = 0 (mod m1)

M 3⋅y3 = 0 (mod m1)

M 1⋅y1 = 0 (mod m2)

M 2⋅y2 = 1 (mod m2)

M 3⋅y3 = 0 (mod m2)

M 1⋅y1 = 0 (mod m3)

M 2⋅y2 = 0 (mod m3)

M 3⋅y3 = 1 (mod m3)

y1 (=2) : the inverse of M 1 (=35)

y2 (=1) : the inverse of M2 (=21)

y3 (=1) : the inverse of M3 (=15)

m2m3

m1m3

m1m2

m2m3

m1m3

m1m2
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Chinese Remainder  Examples (2)

M 1⋅y1 = 35⋅2 = 2⋅2 = 1 (mod 3)

M 2⋅y2 = 21⋅1 = 1⋅1 = 1 (mod 5)

M 3⋅y3 = 15⋅1 = 1⋅1 = 1 (mod 7)

y1 (=2) : the inverse of M 1 (=35)

y2 (=1) : the inverse of M2 (=21)

y3 (=1) : the inverse of M3 (=15)

M 1 = 35

35=11⋅3 + 2

3=1⋅2 + 1 3 − 1⋅2 = 1

35 − 11⋅3 = 2

3 − 1⋅2 = 1

3 − 1⋅(35−11⋅3)=−1⋅35 + 12⋅3

y1 =−1+3∗k

M 2 = 21

21=4⋅5 + 1 21 − 4⋅5 = 1 1⋅21 − 4⋅5 = 1

y2 = 1+5∗k

M 3 = 15

15=2⋅7 + 1 15 − 2⋅7 = 1 1⋅15 − 2⋅7 = 1

y3 = 1+7∗k
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Chinese Remainder  Examples (3)

M 1⋅y1 = 1 (mod m1)

M 2⋅y2 = 0 (mod m1)

M 3⋅y3 = 0 (mod m1)

M 1⋅y1 = 0 (mod m2)

M 2⋅y2 = 1 (mod m2)

M 3⋅y3 = 0 (mod m2)

M 1⋅y1 = 0 (mod m3)

M 2⋅y2 = 0 (mod m3)

M 3⋅y3 = 1 (mod m3)

a1

a2

a3

x = a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3

x = a1 M1⋅y1 = a1 (mod m1)

x = a2 M 2⋅y2 = a2 (mod m2)

x = a3 M 3⋅y3 = a3 (mod m3)

x = 2⋅35⋅2 + 3⋅21⋅1 + 2⋅15⋅1 = 233

x = 233 = 23 (mod 105) m = 3⋅5⋅7 = 105

M 1 = 3⋅5⋅7 /3 = 5⋅7 = 35

M 2 = 3⋅5⋅7 /5 = 3⋅7 = 21
M 3 = 3⋅5⋅7 /7 = 3⋅5 = 15

m1 = 3

m2 = 5
m3 = 7
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Chinese Remainder  Summary 

M 1 = m/m1 = m2m3

M 2 = m /m2 = m1m3

M 3 = m /m3 = m1m2

m = m1m2m3

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)

x = a1 M1⋅y1 + a2 M 2⋅y2 + a3 M 3⋅y3

M 1⋅y1 = 1 (mod m1)

M 2⋅y2 = 1 (mod m2)

M 3⋅y3 = 1 (mod m3)

y1 : the inverse of M1

y2 : the inverse of M 2

y3 : the inverse of M 3

m1 , m2 , m3 : pairwise relatively coprime

gcd (M1 , m1)= 1

gcd (M2 , m2) = 1

gcd (M3 , m3) = 1
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Chinese Remainder Theorem

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
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Upper and Lower Bounds 

https://en.wikipedia.org/wiki/Algorithm
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