< Trigonometry

Let us take a right angled triangle with hypotenuse length 1. If we mark one of the acute angles as , then using the definition of the sine ratio, we have


As the hypotenuse is 1,


Repeating the same process using the definition of the cosine ratio, we have


Pythagorean identities

Since this is a right triangle, we can use the Pythagorean Theorem:






This is the most fundamental identity in trigonometry.









From this identity, if we divide through by squared cosine, we are left with:







If instead we divide the original identity by squared sine, we are left with:







There are basically 3 main trigonometric identities. The proofs come directly from the definitions of these functions and the application of the Pythagorean theorem:


Angle sum-difference identities

Cofunction identities

Multiple angle identities

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.