< Page:The story of the comets.djvu
This page has been proofread, but needs to be validated.

172

The Story of the Comets.

Chap.

their calculations do not always give the perihelion distance of a comet or its periodic time of revolution round the Sun; but limit themselves to announcing the angle of the eccentricity (φ), the mean daily motion (μ), and the logarithm of the semi-axis major or mean distance (a); leaving the student to find out for himself the perihelion distance (q) and the period.

EXAMPLE.

Given, in the case of Holmes's Comet in 1906—
The angle of eccentricity (φ)
                                                                                                                                                                                                                              
24° 20' 26"
Log. semi-axis major (a)
                                                                                                                                                                                                                              
0⋅557427
Mean daily motion (μ)
                                                                                                                                                                                                                              
517"⋅44

To find the Perihelion Distance (q).

(i.) Look out in a Book of Tables the Natural Sine of 24° 20' 26".
(ii.) Subtract this from Unity (1⋅0).
(iii.) Find the logarithm of the result.
(iv.) Add this to the logarithm of a.
(v.) And this will give the logarithm of q.

Example.

(i a.) Nat. Sine of 24° 20' 26" = 0⋅4121594.
(ii a.) 1⋅0 − 0⋅4121594 = 0⋅5878406.
(iii a.) Logarithm of 0⋅5878406 is 9⋅7692595.
(iv a.) Add Log. a = 0⋅557427
Log. (1-e) = 9⋅769260
Log. (q) 0⋅326687
q = 2⋅1217.

To find the Periodic Time in Years.

(i.) Calculate number of seconds of arc in 360°.
(ii.) Find logarithm of that number of seconds.

This article is issued from Wikisource. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.