(886)
eodem minorem. Sic minor erit quam arcus ABC; differentia autem in semi-circumferentia minor erit quam ipsius 11000, & in quadrante minor quàm ipsius 160000. Inter has approximationes sit maxima, penultima sex continue Arithmetice proportionalium, quæ minor erit quàm arcus, differentia autem, in semi-circumferentia minor erit quàm ejusdem 113000, et in quadrante minor quàm ejusdem 13000000. Sed hæc levia mihi videntur, cum possim Approximationes exhibere, quæ ab ipsa semi-circumferentia differant minori intervallo, quàm quælibet ejus pars assignata, neque nobis amplius apparent hæc mirabilia, cum demonstratio solida innotefcat. Ad reliqua ab Hugemio publicata, cum à meo instituto sint aliena, nihil dico, nisi quod ipsa Hugenii dicta (non obstante exactissima sua, ut ait, materiæ hujus examinatione) à meæ Appendiculæ factis, ni fallor, longe superentur. Vale. Decemb. 15. 1668.
![]() | An image should appear at this position in the text. To use the entire page scan as a placeholder, edit this page and replace "{{missing image}}" with "{{raw image|Philosophical Transactions - Volume 003.djvu/266}}". Otherwise, if you are able to provide the image then please do so. For guidance, see Wikisource:Image guidelines and Help:Adding images. |
Figura Hugenii hæc est, quam ipse hoc sensu, licet Gal ice, sic explicat. Sit Arcus-Circuli, qui non excedat semi-circumferentiam, ABC, cujus subtensa sit AC; & dividantur ambo In partes æquales per lineam BD. Ducta subtena AB, capias inde ⅔, easque jungas inde ab A ad E in linea CA protracta. Dein, refecta lineæ DE parte decima EF, ducas FB, & tandem BG, ipsi perpendicularem: & habebis lineam AG æqualem Arcui ABC, cujus excessus tantillus erit, ut etiam tunc, quando hic arcus æqualis erit semi-circumferentiæ Circuli, futura non sit differentia 11400 suæ longitudinis; at quando non est nisi tertiæ partis circumferentiæ, differentia non erit 113000; et si non sit nisi quartæ partis, non differet nisi 190000 suæ longitudinis.
An Extract
THis Account is annexed to a Book, lately publisht in Latin by Dr. John Betts M. D. one of his Majesties Physitians in Ordinary, and Fellow of the London-Colledge of those of that Profession: In which Treatise (to touch that briefly) the Author endeavors to shew, that Milk, or something Analogous to
it,