Mathematical constant
A mathematical constant is a number, which has a special meaning for calculations. For example, the constant π (pronounced "pie") means the ratio of a circle's circumference to its diameter.[1][2] This value is always the same for any circle. A mathematical constant is often a real, non-integral number of interest.[3]
In contrast to physical constants, mathematical constants do not come from physical measurements.
Key mathematical constants
The following table contains some important mathematical constants:
Name | Symbol | Value | Meaning |
---|---|---|---|
Pi, Archimedes' constant or Ludoph's number | π | ≈3.141592653589793 | A transcendental number that is the ratio of the length of a circle's circumference to its diameter. It is also the area of the unit circle. |
e, Napier's constant or Euler's (pronounced "oilers") number | e | ≈2.718281828459045 | A transcendental number that is the base of natural logarithms. |
Phi, golden ratio | φ | ≈1.618033988749894 | It is the value of a larger value divided by a smaller value if this is equal to the value of the sum of the values divided by the larger value. |
Square root of 2, Pythagoras' constant | √2 | ≈1.414213562373095 | An irrational number that is the length of the diagonal of a square with sides of length 1. This number can not be written as a fraction. |
Constants and series
The following table contains a list of constants and series in mathematics, with the following columns:
- Value: Numerical value of the constant.
- LaTeX: Formula or series in TeX format.
- Formula: For use in programs such as Mathematica or Wolfram Alpha.
- OEIS: Link to On-Line Encyclopedia of Integer Sequences (OEIS), where the constants are available with more details.
- Continued fraction: In the simple form [to integer; frac1, frac2, frac3, ...] (in brackets if periodic)
- Type:
- R - Rational number
- I - Irrational number
- T - Transcendental number
- C - Complex number
Note that the list can be ordered correspondingly by clicking on the header title at the top of the table.
Value | Name | Symbol | LaTeX | Formula | Type | OEIS | Continued fraction |
---|---|---|---|---|---|---|---|
3.24697960371746706105000976800847962 | Silver, Tutte–Beraha constant | 2+2 cos(2Pi/7) | T | A116425 | [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] | ||
1.09864196439415648573466891734359621 | Paris constant | I | A105415 | [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] | |||
2.74723827493230433305746518613420282 | Ramanujan nested radical R5 | (2+sqrt(5)+sqrt(15-6 sqrt(5)))/2 | I | [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] | |||
2.23606797749978969640917366873127624 | Square root of 5, Gauss sum | Sum[k=0 to 4]{e^(2k^2 pi i/5)} | I | A002163 | [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;(4),...] | ||
3.62560990822190831193068515586767200 | Gamma(1/4) | 4(1/4)! | T | A068466 | [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] | ||
0.18785964246206712024851793405427323 | MRB constant, Marvin Ray Burns | Sum[n=1 to ∞]{(-1)^n (n^(1/n)-1)} | T | A037077 | [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] | ||
0.11494204485329620070104015746959874 | Kepler–Bouwkamp constant | prod[n=3 to ∞]{cos(pi/n)} | T | A085365 | [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] | ||
1.78107241799019798523650410310717954 | Exp(gamma) G-Barnes function |
|
Prod[n=1 to ∞]{e^(1/n)}/{1 + 1/n} | T | A073004 | [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] | |
1.28242712910062263687534256886979172 | Glaisher–Kinkelin constant | e^(1/2-zeta´{-1}) | T | A074962 | [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] | ||
7.38905609893065022723042746057500781 | Schwarzschild conic constant | Sum[n=0 to ∞]{2^n/n!} | T | A072334 | [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2,(1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc. | ||
1.01494160640965362502120255427452028 | Gieseking constant | . |
T | A143298 | [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] | ||
2.62205755429211981046483958989111941 | Lemniscata constant | 4 sqrt(2/pi) (1/4!)^2 | T | A062539 | [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] | ||
0.83462684167407318628142973279904680 | G, Gauss constant | (4 sqrt(2)(1/4!)^2)/pi^(3/2) | T | A014549 | [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] | ||
1.01734306198444913971451792979092052 | Zeta(6) | Prod[n=1 to ∞] {1/(1-ithprime(n)^-6)} | T | A013664 | [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] | ||
0,60792710185402662866327677925836583 | Constante de Hafner-Sarnak-McCurley | Prod{n=1 to ∞} (1-1/ithprime(n)^2) | T | A059956 | [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] | ||
1.11072073453959156175397024751517342 | The ratio of a square and circumscribed or inscribed circles | sum[n=1 to ∞]{(-1)^(floor((n-1)/2))/(2n-1)} | T | A093954 | [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] | ||
2.80777024202851936522150118655777293 | Fransén–Robinson constant | N[int[0 to ∞] {1/Gamma(x)}] | T | A058655 | [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] | ||
1.64872127070012814684865078781416357 | Square root of e | sum[n=0 to ∞]{1/(2^n n!)} | T | A019774 | [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...] = [1;1,(1,1,4p+1)], p∈ℕ | ||
i | i, imaginary unit | sqrt(-1) | C | ||||
262537412640768743.999999999999250073 | Hermite-Ramanujan constant | e^(π sqrt(163)) | T | A060295 | [262537412640768743;1,1333462407511,1,8,1,1,5,...] | ||
4.81047738096535165547303566670383313 | John constant | e^(π/2) | T | A042972 | [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] | ||
4.53236014182719380962768294571666681 | Constante de Van der Pauw | π/ln(2) | T | A163973 | [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] | ||
0.76159415595576488811945828260479359 | Hyperbolic tangent (1) | (e-1/e)/(e+1/e) | T | A073744 | [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] = [0;(2p+1)], p∈ℕ | ||
0.69777465796400798200679059255175260 | Continued Fraction constant | (sum {n=0 to inf} n/(n!n!)) /(sum {n=0 to inf} 1/(n!n!)) | A052119 | [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;(p+1)], p∈ℕ | |||
0.36787944117144232159552377016146086 | Inverse Napier constant | sum[n=2 to ∞]{(-1)^n/n!} | T | A068985 | [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1,(1,2p,1)], p∈ℕ | ||
2.71828182845904523536028747135266250 | Napier constant | Sum[n=0 to ∞]{1/n!} | T | A001113 | [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;(1,2p,1)], p∈ℕ | ||
0.49801566811835604271369111746219809 - 0.15494982830181068512495513048388 i |
Factorial of i | Gamma(1+i) | C | A212877 A212878 |
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] - [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i | ||
0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i |
Infinite Tetration of i |
i^i^i^... | C | A077589 A077590 |
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i | ||
0.56755516330695782538461314419245334 | Module of Infinite Tetration of i |
Mod(i^i^i^...) | A212479 | [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] | |||
0.26149721284764278375542683860869585 | Meissel-Mertens constant | ..... p: primes | A077761 | [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...] | |||
1.9287800... | Wright constant | = primos: =3, =13, =16381, | A086238 | [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] | |||
0.37395581361920228805472805434641641 | Artin constant | ...... pn: primo | T | A005596 | [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] | ||
4.66920160910299067185320382046620161 | Feigenbaum constant δ |
|
T | A006890 | [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] | ||
2.50290787509589282228390287321821578 | Feigenbaum constant α | T | A006891 | [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] | |||
5.97798681217834912266905331933922774 | Hexagonal Madelung Constant 2 | Pi Log[3]Sqrt[3] | T | A086055 | [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] | ||
0.96894614625936938048363484584691860 | Beta(3) | Sum[n=1 to ∞]{(-1)^(n+1)/(-1+2n)^3} | T | A153071 | [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] | ||
1.902160583104 | Brun constant 2 = Σ inverse twin primes | A065421 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] | ||||
0.870588379975 | Brun constant 4 = Σ inverse of twin prime | A213007 | [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] | ||||
22.4591577183610454734271522045437350 | pi^e | pi^e | A059850 | [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] | |||
3.14159265358979323846264338327950288 | Pi, Archimedes constant | Sum[n=0 to ∞]{(-1)^n 4/(2n+1)} | T | A000796 | [3;7,15,1,292,1,1,1,2,1,3,1,14,...] | ||
0.06598803584531253707679018759684642 | ... Lower limit of Tetration | T | A073230 | [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] | |||
0.20787957635076190854695561983497877 | i^i | e^(-pi/2) | T | A049006 | [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] | ||
0.28016949902386913303643649123067200 | Bernstein constant | T | A073001 | [0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…] | |||
0.28878809508660242127889972192923078 | Flajolet and Richmond | prod[n=1 to ∞]{1-1/2^n} | A048651 | ||||
0.31830988618379067153776752674502872 | Inverse of Pi, Ramanujan | T | A049541 | [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...] | |||
0.47494937998792065033250463632798297 | Weierstraß constant | (E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2) | T | A094692 | [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...] | ||
0.56714329040978387299996866221035555 | Omega constant | sum[n=1 to ∞]{(-n)^(n-1)/n!} | T | A030178 | [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...] | ||
0.57721566490153286060651209008240243 | Euler's number | sum[n=1 to ∞]|sum[k=0 to ∞]{((-1)^k)/(2^n+k)} | ? | A001620 | [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...] | ||
0.60459978807807261686469275254738524 | Dirichlet serie | Sum[1/(n Binomial[2 n, n]), {n, 1, ∞}] | T | A073010 | [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...] | ||
0.63661977236758134307553505349005745 | 2/Pi, François Viète | T | A060294 | [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] | |||
0.66016181584686957392781211001455577 | Twin prime constant | prod[p=3 to ∞]{p(p-2)/(p-1)^2 | A005597 | [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] | |||
0.66274341934918158097474209710925290 | Laplace Limit constant | A033259 | [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...] | ||||
0.69314718055994530941723212145817657 | Logarithm de 2 | Sum[n=1 to ∞]{(-1)^(n+1)/n} | T | A002162 | [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...] | ||
0.78343051071213440705926438652697546 | Sophomore's Dream 1 J.Bernoulli | Sum[ -(-1)^n /n^n] | T | A083648 | [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...] | ||
0.78539816339744830961566084581987572 | Dirichlet beta(1) | Sum[n=0 to ∞]{(-1)^n/(2n+1)} | T | A003881 | [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] | ||
0.82246703342411321823620758332301259 | Traveling Salesman Nielsen-Ramanujan | Sum[n=1 to ∞]{((-1)^(k+1))/n^2} | T | A072691 | [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...] | ||
0.91596559417721901505460351493238411 | Catalan constant | Sum[n=0 to ∞]{(-1)^n/(2n+1)^2} | I | A006752 | [0;1,10,1,8,1,88,4,1,1,7,22,1,2,...] | ||
1.05946309435929526456182529494634170 | Ratio of the distance between semi-tones | 2^(1/12) | I | A010774 | [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] | ||
1,.08232323371113819151600369654116790 | Zeta(04) | Sum[n=1 to ∞]{1/n^4} | T | A013662 | [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] | ||
1.1319882487943 ... | Viswanaths Archived 2013-04-13 at the Wayback Machine constant | A078416 | [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] | ||||
1.20205690315959428539973816151144999 | Apéry constant | Sum[n=1 to ∞]{1/n^3} | I | A010774 | [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...] | ||
1.22541670246517764512909830336289053 | Gamma(3/4) | (-1+3/4)! | T | A068465 | [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...] | ||
1.23370055013616982735431137498451889 | Favard constant | sum[n=1 to ∞]{1/((2n-1)^2)} | T | A111003 | [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] | ||
1.25992104989487316476721060727822835 | Cube root of 2, constante Delian | 2^(1/3) | I | A002580 | [1;3,1,5,1,1,4,1,1,8,1,14,1,10,...] | ||
1.29128599706266354040728259059560054 | Sophomore's Dream 2 J.Bernoulli | Sum[1/(n^n]), {n, 1, ∞}] | A073009 | [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...] | |||
1.32471795724474602596090885447809734 | Plastic number | I | A060006 | [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] | |||
1.41421356237309504880168872420969808 | Square root of 2, Pythagoras constant | prod[n=1 to ∞]{1+(-1)^(n+1)/(2n-1)} | I | A002193 | [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] = [1;(2),...] | ||
1.44466786100976613365833910859643022 | Steiner number | ... Upper Limit of Tetration | A073229 | [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | |||
1.53960071783900203869106341467188655 | Lieb's Square Ice constant | (4/3)^(3/2) | I | A118273 | [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] | ||
1.57079632679489661923132169163975144 | Wallis product | T | A019669 | [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...] | |||
1.60669515241529176378330152319092458 | Erdős–Borwein constant | sum[n=1 to ∞]{1/(2^n-1)} | I | A065442 | [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] | ||
1.61803398874989484820458633436563812 | Phi, Golden ratio | (1+5^(1/2))/2 | I | A001622 | [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] = [0;(1),...] | ||
1.64493406684822643647241516664602519 | Zeta(2) | Sum[n=1 to ∞]{1/n^2} | T | A013661 | [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] | ||
1.66168794963359412129581892274995074 | Somos' quadratic recurrence constant | T | A065481 | [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] | |||
1.73205080756887729352744634150587237 | Theodorus constant | 3^(1/2) | I | A002194 | [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] = [1;(1,2),...] | ||
1.75793275661800453270881963821813852 | Kasner number | A072449 | [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] | ||||
1.77245385090551602729816748334114518 | Carlson-Levin constant | sqrt (pi) | T | A002161 | [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] | ||
2.29558714939263807403429804918949038 | P, Universal parabolic constant | ln(1+sqrt 2)+sqrt 2 | T | A103710 | [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...] | ||
2.30277563773199464655961063373524797 | Bronze Number | (3+sqrt 13)/2 | I | A098316 | [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] = [3;(3),...] | ||
2.37313822083125090564344595189447424 | Lévy constant2 | Pi^(2)/(6*ln(2)) | T | A174606 | [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] | ||
2.50662827463100050241576528481104525 | square root of 2 pi | sqrt (2*pi) | T | A019727 | [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] | ||
2.66514414269022518865029724987313985 | Gelfond-Schneider constant | 2^sqrt{2} | T | A007507 | [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] | ||
2.68545200106530644530971483548179569 | Khintchin constant | prod[n=1 to ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))} | ? | A002210 | [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] | ||
3.27582291872181115978768188245384386 | Khinchin-Lévy constant | e^(\pi^2/(12 ln(2)) | A086702 | [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] | |||
3.35988566624317755317201130291892717 | Reciprocal Fibonacci constant | A079586 | [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] | ||||
4.13273135412249293846939188429985264 | Root of 2 e pi | sqrt(2e pi) | T | A019633 | [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] | ||
6.58088599101792097085154240388648649 | Froda constant | 2^e | [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] | ||||
9.86960440108935861883449099987615114 | Pi Squared | 6 Sum[n=1 to ∞]{1/n^2} | T | A002388 | [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] | ||
23.1406926327792690057290863679485474 | Gelfond constant | Sum[n=0 to ∞]{(pi^n)/n!} | T | A039661 | [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] | ||
Related pages
References
- "Compendium of Mathematical Symbols". Math Vault. 2020-03-01. Retrieved 2020-08-26.
- "Constant | mathematics and logic". Encyclopedia Britannica. Retrieved 2020-08-26.
- Weisstein, Eric W. "Constant". mathworld.wolfram.com. Retrieved 2020-08-26.
Books
- Finch, Steven (2003). Mathematical constants. Cambridge University Press. ISBN 0-521-81805-2.
- Daniel Zwillinger (2012). Standard Mathematical Tables and Formulae. Imperial College Press. ISBN 978-1-4398-3548-7.
- Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics. Chapman & Hall/CRC. ISBN 1-58488-347-2.
- Lloyd Kilford (2008). Modular Forms, a Classical and Computational Introduction. Imperial College Press. ISBN 978-1-84816-213-6.
Online bibliography
Other websites
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.