Semiabelian groups is a class of groups first introduced by Thompson (1984) and named by Matzat (1987).[1] It appears in Galois theory, in the study of the inverse Galois problem or the embedding problem which is a generalization of the former.

Definition

Definition:[2][3][4][5] A finite group G is called semiabelian if and only if there exists a sequence

such that is a homomorphic image of a semidirect product with a finite abelian group (.).

The family of finite semiabelian groups is the minimal family which contains the trivial group and is closed under the following operations:[6][7]

  • If acts on a finite abelian group , then ;
  • If and is a normal subgroup, then .

The class of finite groups G with a regular realizations over is closed under taking semidirect products with abelian kernels, and it is also closed under quotients. The class is the smallest class of finite groups that have both of these closure properties as mentioned above.[8][9]

Example

  • Abelian groups, dihedral groups, and all p-groups of order less than are semiabelian. [10]
  • The following are equivalent for a non-trivial finite group G (Dentzer 1995, Theorm 2.3.) :[11][12]
    (i) G is semiabelian.
    (ii) G posses an abelian and a some proper semiabelian subgroup U with .
Therefore G is an epimorphism of a split group extension with abelian kernel.[13]

See also

References

Citations

Bibliography

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.