Wireless LAN (WLAN) channels are frequently accessed using IEEE 802.11 protocols. Equipment that does so is sold mostly under the trademark Wi-Fi. Other equipment also accesses the same channels, such as Bluetooth. This wireless communications infrastructure uses the radio frequency (RF) spectrum.

The 802.11 standard provides several distinct radio frequency bands for use in Wi-Fi communications: 860/900 MHz, 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz, 45 GHz and 60 GHz. Each range is divided into a multitude of channels. In the standards, channels are numbered at 5 MHz spacing within a band (except in the 45/60 GHz band, where they are 0.54/1.08/2.16 GHz apart), and the number linearly relates to the centre frequency of the channel. Although channels are numbered at 5 MHz spacing, transmitters generally occupy at least 20 MHz, and standards allow for channels to be bonded together to form wider channels for faster throughput.

Countries apply their own regulations to allowable channels, allowed users and maximum power levels within these frequency ranges. The ISM band ranges are also often used.

860/900 MHz (802.11ah)

802.11ah operates in sub-gigahertz unlicensed bands. Each world region supports different sub-bands, and the channels number depends on the starting frequency of the sub-band it belongs to. Therefore there is no global channels numbering plan, and the channels numbers are incompatible between world regions (and even between sub-bands of a same world region).

The following sub-bands are defined in the 802.11ah specifications:

2.4 GHz (IEEE 802.11b-1999|802.11b/IEEE 802.11g-2003|g/IEEE 802.11n-2009|n/Wi-Fi 6|ax)

14 channels are designated in the 2.4 GHz range, spaced 5 MHz apart from each other except for a 12 MHz space before channel 14.[2] The abbreviation F0 designates each channel's fundamental frequency.

# F0
(MHz)
DSSS OFDM Most of
world
[3][4][5][6]
[7][8][9][10]
North
America

[3]

Japan
[3]
Frequency
range
(MHz)
Channel
22 MHz
Frequency
range
(MHz)
Channel
20 MHz
Channel
40 MHz
124122401–2423 12
 
3 2402–242212
 
3 01

 
2
 
3 YesYesYes
224172406–2428 4 2407–24274 4 YesYesYes
324222411–2433 5 2412–24325 5 YesYesYes
424272416–2438 6 2417–24376 6 YesYesYes
524322421–2443 7 2422–24427 7 YesYesYes
624372426–2448 8 2427–24478 8 YesYesYes
724422431–2453 9 2432–24529
9
YesYesYes
824472436–2458 10 2437–245710 YesYesYes
924522441–2463 11 2442–246211 YesYesYes
1024572446–2468 12 2447–246712 YesYesYes
1124622451–2473 13
 
2452–247213 YesYesYes
1224672456–2478 2457–2477 YesavoidedBYes
1324722461–2483 2462–2482 YesavoidedBYes
1424842473–2495 14 NoNo11b onlyC
Notes:

^A In the 2.4 GHz bands bonded 40 MHz channels are uniquely named by the primary and secondary 20 MHz channels, e.g. 9+13. In the 5 GHz bands they are denoted by the center of the wider band and the primary 20 MHz channel e.g. 42[40]

^B In the US, 802.11 operation on channels 12 and 13 is allowed under low power conditions. The 2.4 GHz Part 15 band in the US allows spread-spectrum operation as long as the 50 dB bandwidth of the signal is within the range of 2,400–2,483.5 MHz[11] which fully encompasses channels 1 through 13. A Federal Communications Commission (FCC) document clarifies that only channel 14 is forbidden and that low-power transmitters with low-gain antennas may operate legally in channels 12 and 13.[12] Channels 12 and 13 are nevertheless not normally used in order to avoid any potential interference in the adjacent restricted frequency band, 2,483.5–2,500 MHz,[13] which is subject to strict emission limits set out in 47 CFR § 15.205.[14] Per recent FCC Order 16–181, "an authorized access point device can only operate in the 2483.5–2495 MHz band when it is operating under the control of a Globalstar Network Operating Center and that a client device can only operate in the 2483.5–2495 MHz band when it is operating under the control of an authorized access point"[15]

^C Channel 14 is valid only for DSSS and CCK modes (Clause 18 a.k.a. 802.11b) in Japan. OFDM (i.e., 802.11g) may not be used. (IEEE 802.11-2007 §19.4.2)

Nations apply their own RF emission regulations to the allowable channels, allowed users and maximum power levels within these frequency ranges. Network operators should consult their local authorities as these regulations may be out of date as they are subject to change at any time. Most of the world will allow the first thirteen channels in the spectrum.

Interference happens when two networks try to operate in the same band, or when their bands overlap. The two modulation methods used have different characteristics of band usage and therefore occupy different widths:

  • The DSSS method used by legacy 802.11 and 802.11b (and the 11b-compatible rates of 11g) use 22 MHz of bandwidth. This is from the 11 MHz chip rate used by the coding system. No guard band is prescribed;[16] the channel definition provides 3 MHz between 1, 6, and 11.
  • The OFDM method used by 802.11a/b/g/n occupies a bandwidth of 16.25 MHz. The nameplate bandwidth is set to be 20 MHz, rounding up to a multiple of channel width and providing some guard band for signal to attenuation along the edge of the band.[17] This guardband is mainly used to accommodate older routers with modem chipsets prone to full channel occupancy, as most modern Wi‑Fi modems are not prone to excessive channel occupancy.
Graphical representation of Wireless LAN channels in 2.4 GHz band. Channels 12 and 13 are customarily unused in the United States. As a result, the usual 20 MHz allocation becomes 1/6/11, the same as 11b.

While overlapping frequencies can be configured at a location and will usually work, it can cause interference resulting in slowdowns, sometimes severe, particularly in heavy use. Certain subsets of frequencies can be used simultaneously at any one location without interference (see diagrams for typical allocations). The consideration of spacing stems from both the basic bandwidth occupation (described above), which depends on the protocol, and from attenuation of interfering signals over distance. In the worst case, using every fourth or fifth channel by leaving three or four channels clear between used channels causes minimal interference, and narrower spacing still can be used at further distances.[18][19] The "interference" is usually not actual bit-errors, but the wireless transmitters making space for each other. Interference resulting in bit-error is rare.[19] The requirement of the standard is for a transmitter to yield when it decodes another at a level of 3 dB above the noise floor,[20] or when the non-decoded noise level is higher than a threshold Pth which, for Wi-Fi 5 and earlier, is between -76 and -80 dBm.[19]

As shown in the diagram, bonding two 20 MHz channels to form a 40 MHz channel is permitted in the 2.4 GHz bands. These are generally referred to by the centres of the primary 20 MHz channel and the adjacent secondary 20 MHz channel (e.g. 1+5, 9+13, 13–9, 5–1). The primary 20 MHz channel is used for signalling and backwards compatibility, the secondary is only used when sending data at full speed.

3.65 GHz (802.11y)

Except where noted, all information taken from Annex J of IEEE 802.11y-2008

This range is documented as only being allowed as a licensed band in the United States. However, not in the original specification, under newer frequency allocations from the FCC, it falls under the 3.55–3.7 GHz Citizens Broadband Radio Service band. This allows for unlicensed use, under Tier 3 GAA rules, provided that the user doesn't cause harmful interference to Incumbent Access users or Priority Access Licensees and accepts all interference from these users,[21] and also follows of all the technical requirements in CFR 47 Part 96 Subpart E.

A 40 MHz band is available from 3655 to 3695 MHz. It may be divided into eight 5 MHz channels, four 10 MHz channels, or two 20 MHz channels, as follows:

4.9–5.0 GHz (802.11j) WLAN

In Japan starting in 2002, 100 MHz of spectrum from 4900 to 5000 MHz can be used for both indoor and outdoor connection once registered. Originally, another spectrum of 5030–5091 MHz was also available for use, however, it has been re-purposed and cannot be used after 2017.[22]

50 MHz of spectrum from 4940 to 4990 MHz (WLAN channels 20–26) are in use by public safety entities in the United States. Within this spectrum there are two non-overlapping channels allocated, each 20 MHz wide. The most commonly used channels are 22 and 26.

5 GHz (802.11a/h/n/ac/ax)

Table of regulations by jurisdiction

Country-specific information

United States

Source:[56]

In 2007, the FCC (United States) began requiring that devices operating in the bands of 5.250–5.350 GHz and 5.470–5.725 GHz must employ dynamic frequency selection (DFS) and transmit power control (TPC) capabilities. This is to avoid interference with weather-radar and military applications.[57] In 2010, the FCC further clarified the use of channels in the 5.470–5.725 GHz band to avoid interference with TDWR, a type of weather radar system.[58] In FCC parlance, these restrictions are now referred to collectively as the Old Rules. On 10 June 2015, the FCC approved a new ruleset for 5 GHz device operation (called the New Rules), which adds 160 and 80 MHz channel identifiers, and re-enables previously prohibited DFS channels, in Publication Number 905462.[59] This FCC publication eliminates the ability for manufacturers to have devices approved or modified under the Old Rules in phases; the New Rules apply in all circumstances as of 2 June 2016.[59]

Source:[60] "To help meet the increasing demand for Wi-Fi and other unlicensed services, the FCC's new rules will make 45 megahertz of the 5.9 GHz band available for unlicensed use. This spectrum's impact will be further amplified by the fact that it is adjacent to an existing Wi-Fi band which, when combined with the 45 megahertz made available today, will support cutting edge broadband applications. These high-throughput channels—up to 160 megahertz wide—will enable gigabit Wi-Fi connectivity for schools, hospitals, small businesses, and other consumers. The Report and Order adopts technical rules to enable full-power indoor unlicensed operations in the lower 45 megahertz portion of the band immediately, as well as opportunities for outdoor unlicensed use on a coordinated basis under certain circumstances. Under the new rules, ITS services will be required to vacate the lower 45 megahertz of the band within one year."

United Kingdom

The UK's Ofcom regulations for unlicensed use of the 5 GHz band is similar to Europe, except that DFS is not required for the frequency range 5.725–5.850 GHz and the SRD maximum mean e.i.r.p is 200 mW instead of 25 mW.[61]

Additionally, 5.925–6.425 GHz is also available for unlicensed use, as long as it is used indoors with an SRD of 250 mW.

Germany

Germany requires DFS and TPC capabilities on 5.250–5.350 GHz and 5.470–5.725 GHz as well; in addition, the frequency range 5.150–5.350 GHz is allowed only for indoor use, leaving only 5.470–5.725 GHz for outdoor and indoor use.[62]

Since this is the German implementation of EU Rule 2005/513/EC, similar regulations must be expected throughout the European Union.[63][64]

European standard EN 301 893 covers 5.15–5.725 GHz operation, and as of 23 May 2017 v2.1.1 has been adopted.[65] 6 GHz can now be used.[66]

Austria

Austria adopted Decision 2005/513/EC directly into national law.[67] The same restrictions as in Germany apply, only 5.470–5.725 GHz is allowed to be used outdoors and indoors.

Japan

Japan's use of 10 and 20 MHz-wide 5 GHz wireless channels is codified by Association of Radio Industries and Businesses (ARIB) document STD-T71, Broadband Mobile Access Communication System (CSMA).[68] Additional rule specifications relating to 40, 80, and 160 MHz channel allocation has been taken on by Japan's Ministry of Internal Affairs and Communications (MIC).[69]

Argentina

In Riobama 451 caba gran buenosaires, the use of TPC is required in the 5.150–5.350 GHz and 5.470–5.725 GHz bands is required, but devices without TPC are allowed with a reduction of 3 dB.[70] DFS is required in the 5.250–5.350 GHz and 5.470–5.725 GHz bands, and optional in the 5.150–5.250 GHz band.[71]

Australia

As of 2015, some of the Australian channels require DFS to be utilised (a significant change from the 2000 regulations, which allowed lower power operation without DFS).[8] As per AS/NZS 4268 B1 and B2, transmitters designed to operate in any part of 5250–5350 MHz and 5470–5725 MHz bands shall implement DFS in accordance with sections 4.7 and 5.3.8 and Annex D of ETSI EN 301 893 or alternatively in accordance with FCC paragraph 15.407(h)(2). Also as per AS/NZS 4268 B3 and B4, transmitters designed to operate in any part of 5250–5350 MHz and 5470–5725 MHz bands shall implement TPC in accordance with sections 4.4 and 5.3.4 of ETSI EN 301 893 or alternatively in accordance with FCC paragraph 15.407(h)(1).

New Zealand

New Zealand regulation differs from Australian.[72]

Philippines

In The Philippines, the National Telecommunications Commission (NTC) allows the use of 5150 MHz to 5350 MHz and 5470 MHz to 5850 MHz frequency bands indoors with an effective radiated power (ERP) not exceeding 250 mW. Indoor Wireless Data Network (WDN) equipment and devices shall not use external antenna. All outdoor equipment/radio station whether for private WDN or public WDN shall be covered by appropriate permits and licenses required under existing rules and regulations.[73]

Singapore

Singapore regulation requires DFS and TPC to be used in the 5.250–5.350 GHz band to transmit more than 100 mW effective radiated power (EIRP), but no more than 200 mW, and requires DFS capability on 5.250–5.350 GHz below or equal to 100 mW EIRP, and requires DFS and TPC capabilities on 5.470–5.725 below or equal to 1000 mW EIRP. Operating 5.725–5.850 GHz above 1000 mW and below or equal to 4000 mW EIRP shall be approved on exceptional basis.[41]

South Korea

In South Korea, the Ministry of Science and ICT has public notices. 신고하지 아니하고 개설할 수 있는 무선국용 무선설비의 기술기준, Technical standard for radio equipment for radio stations that can be opened without reporting. They allowed 160 MHz channel bandwidth from 2018 to 2016–27.[74]

China

China MIIT expanded allowed channels as of 31 December 2012 to add UNII-1, 5150–5250 MHz, UNII-2, 5250–5350 MHz (DFS/TPC), similar to European standards EN 301.893 V1.7.1.[75] China MIIT expanded allowed channels as of 3 July 2017 to add UNII-3, 5725–5850 MHz.[76]

Indonesia

Indonesia allows use of the band 5150–5350 MHz with maximum EIRP of 200 mW (23 dBm) and maximum bandwidth of 160 MHz, and the band 5725–5825 MHz with the same maximum EIRP and maximum bandwidth of 80 MHz for indoor use. Outdoors, use of the band 5725–5825 MHz with maximum EIRP of 4 W (36 dBm) is allowed, with a maximum bandwidth of 20 MHz.[77][78]

India

In exercise of the powers conferred by sections 4 and 7 of the Indian Telegraph Act, 1885 (13 of 1885) and sections 4 and 10 of the Indian Wireless Telegraphy Act, 1933 (17 of 1933) and in supersession of notification under G.S.R. 46(E), dated 28 January 2005 and notification under G.S.R. 36(E), dated 10 January 2007 and notification under G.S.R. 38(E), dated 19 January 2007, the Central Government made the rules, called the Use of Wireless Access System including Radio Local Area Network in 5 GHz band (Exemption from Licensing Requirement) Rules, 2018. The rules include criteria like 26 dB bandwidth of the modulated signal measured relative to the maximum level of the modulated carrier, the maximum power within the specified measurement bandwidth, within the device operating band; measurements in the 5725–5875 MHz band are made over a bandwidth of 500 kHz; measurements in the 5150–5250 MHz, 5250–5350 MHz, and 5470–5725 MHz bands are made over a bandwidth of 1 MHz or 26 dB emission bandwidth of the device. No licence shall be required under indoor and outdoor environment to establish, maintain, work, possess or deal in any wireless equipment for the purpose of low power wireless access systems. Transmitters operating in 5725–5875 MHz, all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emission shall not exceed an EIRP of −27 dBm/MHz.[79] [80]

5.9 GHz (802.11p)

The 802.11p amendment published on 15 July 2010, specifies WLAN in the licensed band of 5.9 GHz (5.850–5.925 GHz).

6 GHz (802.11ax and 802.11be)

The Wi-Fi Alliance has introduced the term Wi‑Fi 6E to identify and certify IEEE 802.11ax devices that support this new band, which is also used by Wi-Fi 7 (IEEE 802.11be).

Initialisms (precise definition below):

  • LPI: low-power indoor
  • VLP: very-low-power

United States

On 23 April 2020, the FCC voted on and ratified a Report and Order[85][86] to allocate 1.2 GHz of unlicensed spectrum in the 6 GHz band (5.925–7.125 GHz) for Wi-Fi use.

Standard power

Standard-power access points are permitted indoors and outdoors at a maximum EIRP of 36 dBm in the U-NII-5 and U-NII-7 sub-bands with automatic frequency coordination (AFC).

Low-power indoor (LPI) operation

Note: Partial channels indicate channels that span UNII boundaries, which is permitted in 6 GHz LPI operation. Under the proposed channel numbers, the U-NII-7/U-NII-8 boundary is spanned by channels 185 (20 MHz), 187 (40 MHz), 183 (80 MHz), and 175 (160 MHz). The U-NII-6/U-NII-7 boundary is spanned by channels 115 (40 MHz), 119 (80 MHz), and channel 111 (160 MHz).

For use in indoor environments, access points are limited to a maximum EIRP of 30 dBm and a maximum power spectral density of 5 dBm/MHz. They can operate in this mode on all four U-NII bands (5,6,7,8) without the use of automatic frequency coordination. To help ensure they are used only indoors, these types of access points are not permitted to be connectorized for external antennas, weather-resistant, or run on battery power.[86]:41

Very-low-power devices

The FCC may issue a ruling in the future on a third class of very low power devices such as hotspots and short-range applications.

Canada

In November 2020, the Innovation, Science and Economic Development (ISED) of Canada published "Consultation on the Technical and Policy Framework for Licence-Exempt Use in the 6 GHz Band".[87] They proposed to allow licence-exempt operations in the 6 GHz spectrum for three classes of radio local area networks (RLANs):

Standard power

For indoor and outdoor use. Maximum EIRP of 36 dBm and maximum power spectral density (PSD) of 23 dBm/MHz. Should employ Automated Frequency Coordination (AFC) control.

Low-power indoor (LPI)

For indoor use only. Maximum EIRP of 30 dBm and maximum PSD of 5 dBm/MHz.

Very-low-power (VLP)

For indoor and outdoor use. Maximum EIRP of 14 dBm and maximum PSD of -8 dBm/MHz.

Europe

ECC Decision (20)01 from 20 November 2020[88] allocated the frequency band from 5925 to 6425 MHz (corresponding to the US U-NII-5 band) for use by low-power indoor and very-low-power devices for Wireless Access Systems/Radio Local Area Networks (WAS/RLAN), with a portion specifically reserved for rail networks and intelligent transport systems.[89]

United Kingdom

Since July 2020, the UK's Ofcom permitted unlicensed use of the lower 6 GHz band (5925 to 6425 MHz, corresponding to the US U-NII-5 band) by Low Power indoor and Very Low Power indoor and mobile Outdoor devices.[90][91]

Australia

In April 2021, Australia's ACMA opened consultations for the 6 GHz band. The lower 6 GHz band (5925 to 6425 MHz, corresponding to the US U-NII-5 band) was approved for 250 mW EIRP indoors and 25 mW outdoors on March 4, 2022.[92] Further consideration is also being given to releasing the upper 6 GHz band (6425 to 7125 MHz) for WLAN use as well, although nothing has been officially proposed at this time.

Japan

In September 2022, the Ministry of Internal Affairs and Communications announced amendments to the ministerial order and notices related to the Radio Act. [93]

Low-power indoor (LPI)

For indoor use only. Maximum EIRP of 200 mW.

Very-low-power (VLP)

For indoor and outdoor use. Maximum EIRP of 25 mW.

Russia

In December 2022, the Ministry of Digital Development, Communications and Mass Media published protocol meetings Russian State Commission for Radio Frequencies.[94]

Low-power indoor (LPI)

For indoor use only and employ transmitter power control (TPC). Maximum EIRP of 200 mW and maximum PSD of 10 mW/MHz.

Very low power (VLP)

For indoor and mobile outdoor devices use. Maximum EIRP of 25 mW and maximum PSD of 1.3 mW/MHz.

Singapore[95]

In May 2023, Singapore's IMDA will amend its Regulations to allocate the radio frequency spectrum 5,925 MHz – 6,425 MHz for Wi-Fi use in Singapore.

45 GHz (802.11aj)

The 802.11aj standards, also known as WiGig, operate in the 45 GHz spectrum.

ChannelFrequency (GHz) ChannelFrequency (GHz)
CenterMin.Max.BW CenterMin.Max.BW
142.6642.3942.930.54 1142.9342.3943.471.08
243.2042.9343.47
343.7443.4744.01 1244.0143.4744.55
444.2844.0144.55
544.8244.5545.09 1345.0944.5545.63
645.3645.0945.63
745.9045.6346.17 1446.1745.6346.71
846.4446.1746.71
947.5247.2547.79 1547.7947.2548.33
1048.0647.7948.33

60 GHz (802.11ad/aj/ay)

The 802.11ad/aj/ay standards, also known as WiGig, operate in the 60 GHz V band unlicensed ISM band spectrum.

Channel
2.16 GHz
Frequency (GHz) Channel
4.32 GHz
Channel
6.48 GHz
Channel
8.64 GHz
Channel
1.08 GHz
Frequency (GHz)
CenterMin.Max. CenterMin.Max.
158.3257.2459.40 91725 3357.7857.2458.32
260.4859.4061.56 101826 3458.8658.3259.40
362.6461.5663.72 111927 3559.9459.4060.48
464.8063.7265.88 122028 3661.0260.4861.56
566.9665.8868.04 132129 3762.1061.5662.64
669.1268.0470.20 1422 3863.1862.6463.72
771.2870.2072.36 15 3964.2663.7264.80
873.4472.3674.52 4065.3464.8065.88

Indonesia

Indonesia allows the use of the band 57–64 GHz with maximum EIRP of 10 W (40 dBm), and maximum bandwidth of 2.16 GHz, for indoor use.[96][97]

See also

Notes

    References

    1. "Advantages and Disadvantages of ISM Band Frequencies". L-com Global Connectivity. Retrieved 2018-08-18.
    2. IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE. 14 December 2016. Table 15-6—DSSS PHY Frequency Channel Plan. doi:10.1109/IEEESTD.2016.7786995. ISBN 978-1-5044-3645-8.
    3. 1 2 3 IEEE 802.11-2007 — Table 18-9
    4. 1 2 Article 10, Act No. 14448 of 4 December 2017 (in Brazilian Portuguese). Anatel. Retrieved 2022-08-20.
    5. "WLAN Regulatory Update". 3 February 2003.
    6. "Cuadro Nacional de Atribución de Frecuencias (CNAF)" [National Table of Attribution of Frequencies (CNAF)] (in Spanish). 6 February 2008. Archived from the original on 6 February 2008. Retrieved 2 August 2017.
    7. 1 2 Israel: צו הטלגרף האלחוטי [Wireless Telegraph Order] (in Hebrew). Archived from the original on 4 February 2021.
    8. 1 2 3 "Radiocommunications (Low Interference Potential Devices) Class Licence 2015". www.legislation.gov.au. Retrieved 16 March 2022.
    9. "WLAN / RLAN". Bakom.Admin.ch. Retrieved 24 June 2017.
    10. "Gazette Notification No. G.S.R. 45 (E), dated 28.1.2005" (PDF). >
    11. "dead link". Archived from the original on 2012-12-12. Retrieved 18 February 2014.
    12. "TCB workshop on unlicensed devices" (PDF). October 2005. p. 58. Archived from the original (PDF) on 5 November 2008.
    13. "NTIA Comments ET Docket No 03-108 02-15-2005". www.ntia.doc.gov. Retrieved 5 June 2016.
    14. "47 CFR Ch. I (10–1–04 Edition)" (PDF). Edocket.access.gpo.gov. Retrieved 2 August 2017.
    15. "FCC 16-181" (PDF). apps.fcc.gov. 23 December 2016. Retrieved 22 February 2017.
    16. "DSSS Frame Structure". rfmw.em.keysight.com. Chip Rate Mcps
    17. "802.11 OFDM WLAN Overview". rfmw.em.keysight.com.
    18. "Choosing the right Wi-Fi channel can minimize wireless interference". compnetworking.about.com. Retrieved 5 June 2016.
    19. 1 2 3 Garcia Villegas, E.; et al. (2007). Effect of adjacent-channel interference in IEEE 802.11 WLANs (PDF). CrownCom 2007. ICST & IEEE. Archived from the original (PDF) on 2011-07-20.
    20. "Channel Bonding in WiFi and Radio Frequency Physics | Network Computing".
    21. "3.5 GHz Band Overview". Federal Communications Commission. 2015-12-16. Retrieved 2022-06-15.
    22. "5GHz帯無線アクセスシステム" [5GHz Band Wireless Access System]. 総務省 電波利用ホームページ|免許関係 [Ministry of Internal Affairs and Communications Radio Usage] (in Japanese).
    23. "Code of Federal Regulations". eCFR.gov. Retrieved 25 March 2020.
    24. "RSS-247 — Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices". Industry Canada. Retrieved 10 August 2015.
    25. "5GHz Regulations in Canada (2018 Update)". Retrieved 26 July 2020.
    26. "IR 2030 - Licence Exempt Short Range Devices (April 2021)" (PDF). Retrieved 8 December 2021.
    27. "COMMISSION DECISION of 11 July 2005 on the harmonised use of radio spectrum in the 5 GHz frequency band for the implementation of wireless access systems including radio local area networks (WAS/RLANs)". eur-lex.europa.eu. Retrieved 27 January 2016.
    28. "Commission Decision of 12 February 2007 amending Decision 2005/513/EC on the harmonised use of radio spectrum in the 5 GHz frequency band for the implementation of Wireless Access Systems including Radio Local Area Networks (WAS/RLANs)". eur-lex.europa.eu. Retrieved 27 January 2016.
    29. "ERC Recommendation 70-03 Relating to the use of Short Range Devices (SRD)". www.efis.dk. Retrieved 31 May 2018.
    30. "Electronic Communications Committee ECC Decision of 9 July 2004 on the harmonised use of the 5 GHz frequency bands for the implementation of Wireless Access Systems including Radio Local Area Networks (WAS/RLANs)" (PDF). www.erodocdb.dk. Archived from the original (PDF) on 2016-02-02. Retrieved 27 January 2016.
    31. "ETSI EN 301 893 V2.1.1 (2017–05) 5 GHz RLAN; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU" (PDF). www.etsi.org. Retrieved 24 December 2018.
    32. "UK 5GHz WLAN Spectrum (Aug 2017)" (PDF). Bowden Networks.
    33. "Приложение к решению ГКРЧ от 16 июня 2021 г. No. 21-58-05 (стр.10-11)" [Appendix to decision of State RF Commission No. 21-58-05 (page 10-11)] (PDF) (in Russian). 16 June 2021.
    34. "無線LAN|基礎知識" [Wireless LAN | Basic Knowledge] (in Japanese). Retrieved 29 April 2018.
    35. "Restudy of 5GHz band radar detection requirement and points to the market growth" (PDF). Retrieved 28 March 2020.
    36. "Top 10 Printers Compatible with 5GHz Wifi (Top Pick) - Tech Doa". 2022-03-19. Retrieved 2022-06-09.
    37. "India's National Frequency allocation plan 2018" (PDF).
    38. "index : kernel/git/linville/wireless-regdb.git".
    39. "Gazette Notification for license exemption for usage of 5GHz frequency band for Wireless LAN" (PDF).
    40. "IDA Singapore: Spectrum Management Handbook" (PDF). May 2011. p. 30. Archived from the original (PDF) on 10 March 2016. Retrieved 2 August 2017.
    41. 1 2 "IMDA Technical Specification Short Range Devices – Issue 1 Rev 1, April 2018 / See Page 13 & 14" (PDF). Archived from the original (PDF) on 24 February 2015. Retrieved 7 September 2018.
    42. Hou, Chun "johnson" (1 April 2013). "Wi-Fi Amateur: China Opened More Channels in 5 GHz & Embraced IEEE Std 802.11ac VHT80". wifiamateur.blogspot.com. Retrieved 5 June 2016.
    43. 工业和信息化部关于加强和规范2400MHz、5100MHz和5800MHz频段无线电管理有关事宜的通知 [Notice from the Ministry of Industry and Information Technology on Matters Relating to the Strengthening and Standardization of Radio Management in the 2400MHz, 5100MHz and 5800MHz Frequency Bands] (in Chinese).
    44. "대한민국 주파수 분배표,과학기술정보통신부고시 제2019-87호, 2019. 10. 18" [Korea Frequency Distribution Table (Ministry of Science and ICT Commission No. 2019-87, 2019.10.18)] (in Korean). Retrieved 2017-08-02.
    45. "신고하지 아니하고 개설할 수 있는 무선국용 무선설비의 기술기준" [Technical standard for radio equipment for radio stations that can be opened without reporting]. NATIONAL LAW INFORMATION CENTER. Korea Ministry of Government Legislation. Retrieved 12 April 2020.
    46. "Bilgi Teknolojileri ve İletişim Kurulu Kararı" [Decision of İnformation Technology and Communication Board] (PDF). www.btk.gov.tr (in Turkish). 10 March 2021. Retrieved 2 November 2021.
    47. "The Radio Frequency Spectrum Regulations 2015" (PDF). Icasa.org.za. pp. 74–76. Retrieved 10 September 2018.
    48. Article 11, Act No. 14448 of 4 December 2017 (in Brazilian Portuguese). Anatel. Retrieved 2022-08-20.
    49. "低功率射頻器材技術規範" [Technical Specifications for Low Power Radio Frequency Equipment] (PDF) (in Chinese). National Communications Commission, Taiwan (R.O.C.). Archived (PDF) from the original on 3 September 2023. Retrieved 3 September 2023.
    50. "Radiocommunications Regulations (General User Radio Licence for Short Range Devices) Notice 2019". gazette.govt.nz. Retrieved 28 March 2020.
    51. "FORM OF INDIVIDUAL LICENSE FOR THE USE OF 2.4 and 5 GHz Spectrum" (PDF). Archived from the original (PDF) on 10 August 2016. Retrieved 28 March 2020.
    52. "Quy định danh mục thiết bị vô tuyến điện được miễn giấy phép sử dụng tần số vô tuyến điện, điều kiện kỹ thuật và khai thác kèm theo" (PDF). mic.gov.vn. Retrieved 25 December 2022.
    53. "Peraturan Menteri Komunikasi dan Informatika Nomor 1 Tahun 2019 tanggal 24 April 2019". jdih.kominfo.go.id (in Indonesian). Retrieved 2020-12-05.
    54. "Wireless Data Networks And Devices" (PDF). ntc.gov.ph. Retrieved 3 August 2023.
    55. "Use of the 5.850-5.925 GHz Band". FCC. 20 November 2020. Retrieved 27 January 2021.
    56. IEEE 802.11-2007 Annex J modified by amendments k, y and n.
    57. "15.407 – General technical requirements". louise.hallikainen.org. Archived from the original on 23 March 2012. Retrieved 2 August 2017.
    58. "Publication Number: 443999 Rule Parts: 15E". Federal Communications Commission. 14 August 2014. Devices must be professionally installed when operating in the 5470 – 5725 GHz band
    59. 1 2 FCC Office of Engineering and Technology. "905462 15.401 UNII, U-NII, DFS Test Procedures". apps.fcc.gov. Retrieved 8 August 2015.
    60. FCC Modernizes 5.9 GHz Band for Wi-Fi and AUTO SAFETY New Plan Makes Additional Spectrum Available Immediately for Improved Indoor Wi-Fi Connectivity While Authorizing Market-Driven Transportation Safety Services
    61. "IR 2030 Licence Exempt Short Range Devices (April 2021)" (PDF). Retrieved 8 December 2021.
    62. "Bundesnetzagentur Vfg 7/2010 / See footnote 4 and 5 (German only)" (PDF). Retrieved 2 August 2017.
    63. "EUR-Lex – 32005D0513 – EN – EUR-Lex". eur-lex.europa.eu. Retrieved 5 June 2016.
    64. "EUR-Lex – 32007D0090 – EN – EUR-Lex". eur-lex.europa.eu. Retrieved 5 June 2016.
    65. "Details of 'REN/BRAN-60015' Work Item Schedule". Retrieved 24 December 2018.
    66. "WLAN-Nutzungen nun auch im 6 GHz-Bereich 02. July 2021" (PDF). Retrieved 29 December 2021.
    67. "Information of the Austrian Telecommunications Authority – Wireless Local Area Networks (WAS, WLAN, RLAN)" (PDF). Archived from the original (PDF) on July 14, 2019. Retrieved August 2, 2017.
    68. "List of ARIB Standards for Radio". www.arib.or.jp. Retrieved 19 January 2016.
    69. Hou, Chun "johnson" (3 April 2013). "Wi-Fi Amateur: IEEE Std 802.11ac Deployment in Japan". wifiamateur.blogspot.com. Retrieved 19 January 2016.
    70. Article 11.5, Act No. 14448 of 4 December 2017 (in Brazilian Portuguese). Anatel. Retrieved 2022-08-20.
    71. Article 11.6, Act No. 14448 of 4 December 2017 (in Brazilian Portuguese). Anatel. Retrieved 2022-08-20.
    72. "Short Range Devices GURL". Radio Spectrum Management New Zealand.
    73. "Wireless Data Networks And Devices" (PDF). ntc.gov.ph. Retrieved 3 August 2023.
    74. "신고하지 아니하고 개설할 수 있는 무선국용 무선설비의 기술기준" [Technical Standard for Radio Equipment for Radio Stations That Can Be Opened without Reporting]. National Law Information Center (in Korean). Korea Ministry of Government Legislation. Retrieved 12 April 2020.
    75. "工业和信息化部发布5150-5350兆赫兹频段无线接入系统频率使用相关事宜的通知" [Ministry of Industry and Information Technology Issues Notice on Frequency Use of Wireless Access System in the 5150-5350 MHz Band]. Ministry of Industry and Information Technology (Press release) (in Chinese). Archived from the original on 30 May 2013. Retrieved 2 August 2017.
    76. "关于使用5.8GHz频段频率事宜的通知" [Notice on Frequency Use of Wireless Access System around 5.8GHz]. Ministry of Industry and Information Technology (Press release) (in Chinese). Retrieved 19 August 2021.
    77. https://peraturan.bpk.go.id/Details/255564/permenkominfo-no-2-tahun-2023
    78. https://jdih.kominfo.go.id/produk_hukum/view/id/862/t/peraturan+menteri+komunikasi+dan+informatika+nomor+2+tahun+2023
    79. "India's National Frequency allocation plan 2018" (PDF)" (PDF).
    80. "Gazette Notification for license exemption for usage of 5GHz frequency band for Wireless LAN" (PDF)" (PDF).
    81. "Radiocommunications Regulations (General User Radio Licence for Short Range Devices) Notice 2022". Gazette.govt.nz. No. 2022-go3100. 1 August 2022. Retrieved 3 August 2023.
    82. Article 11.7, Act No. 14448 of 4 December 2017 (in Brazilian Portuguese). Anatel. Retrieved 2022-08-20.
    83. "Office of the Communications Authority - Smart Choice of Wi-Fi Devices". www.ofca.gov.hk. Retrieved 2024-01-16.
    84. except Europe
    85. "FCC Opens 6 GHz Band to Wi-Fi and Other Unlicensed Uses". fcc.gov. 23 April 2020.
    86. 1 2 "Unlicensed Use of the 6 GHz BandReport and Order and Further Notice of Proposed Rulemaking; ET Docket No. 18-295; GN Docket No. 17-183" (PDF). FCC. 2 April 2020. Retrieved 24 April 2020.
    87. "Consultation on the Technical and Policy Framework for Licence-Exempt Use in the 6 GHz Band". ECC Newsletter. November 2020. Retrieved 4 January 2022.
    88. "ECO Documentation".
    89. "Spectrum assists drive towards better road and rail safety". ECC Newsletter. December 2020. Retrieved 1 January 2022.
    90. "Statement: Improving Spectrum Access for WiFi – spectrum use in the 5 and 6 GHz bands". Ofcom. 2020-07-24. Retrieved 2021-12-08.
    91. "IR 2030 Licence Exempt Short Range Devices (April 2021)" (PDF). OFCOM. Retrieved 2021-12-08.
    92. "Radiocommunications (Low Interference Potential Devices) Class Licence Variation 2022 (No. 1)". The Federal Register of Legislation. 2022-03-04. Retrieved 2022-03-13.
    93. "電波法施行規則等の一部を改正する省令(令和4年総務省令第59号)" (PDF). Ministry of Internal Affairs and Communications. 2022-09-02. Retrieved 2023-01-22.
    94. "Решение ГКРЧ при Минцифры России от 23.12.2022 N 22-65-05 (О выделении полос радиочастот, внесении изменений в решения ГКРЧ и продлении срока действия решений ГКРЧ и прекращении действия решений ГКРЧ)" (PDF). Ministry of Digital Development, Communications and Mass Media. 2022-12-22. Retrieved 2022-12-30.
    95. "Media Factsheet - Allocation of 6 GHz Band in Singapore". Infocomm Media Development Authority. Retrieved 2023-12-03.
    96. https://peraturan.bpk.go.id/Details/255564/permenkominfo-no-2-tahun-2023
    97. https://jdih.kominfo.go.id/produk_hukum/view/id/862/t/peraturan+menteri+komunikasi+dan+informatika+nomor+2+tahun+2023

    Further reading

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.